Monday, December 4th, 2017
Observed average annual growth of trees 2008-2014
We model average annual growth \(y_{ij}\) of tree \(i\) of species \(j\) for \(j=1,\ldots,k\).
\[ \begin{align} y_{ij} &= \beta_{0,j} + \left\{\text{focal info}\right\} + \left\{\text{competitor info}\right\} + \epsilon\\ &= \beta_{0,j} + \left\{\beta_{\text{dbh},j}\text{dbh}_{ij}\right\} + \left\{\text{competitor info}\right\} + \epsilon\\ \end{align} \]
Two choices for \(\left\{\text{competitor info}\right\}\) where \(\text{BM}\) is biomass:
\[ \begin{array}{rr} \text{Choice 1:} & \beta_{\text{BM},j} \sum_{\text{comp trees}} \text{BM}\\ \text{Choice 2:} & \sum_{j'} \lambda_{j,j'} \sum_{\substack{\text{comp trees} \\ \text{of species} \\ j'}} \text{BM}\\ \end{array} \]
To model the competitive effect of neighboring trees on trees of species \(j\), should we
i.e. Do we use \(k\) parameters or \(k \times k\) parameters?
\[ \begin{align} \boldsymbol{\beta} = \left(\beta_{\text{BM},1}, \ldots, \beta_{\text{BM},k}\right) \text{ vs. } \boldsymbol{\lambda} = \left( \begin{array}{ccc} \lambda_{1,1} & \ldots & \lambda_{1,k}\\ \vdots & \ddots & \vdots\\ \lambda_{k,1} & \ldots & \lambda_{k,k}\\ \end{array} \right) \end{align} \]
\[ \begin{align} \mathbb{E}[\mu|y_1,\ldots,y_n] &= \left(\frac{\frac{1}{\sigma_0^2}}{\frac{1}{\sigma_0^2} + \frac{n}{\sigma_0^2}}\right) \mu_0 + \left(\frac{\frac{n}{\sigma_0^2}}{\frac{1}{\sigma_0^2} + \frac{n}{\sigma_0^2}}\right) \overline{y} \end{align} \]
Along these lines, the red oaks (smaller \(n\)) will "borrow" information from black oaks (larger \(n\)) via \(\mu_{\text{oaks}}\).
To generate posterior predictions \(\widehat{y}_{ij}\) of \(y_{ij}\)
\[ \begin{align} p\left(\widehat{y}_{ij}\left|\boldsymbol{y}\right.\right) &= \int_{\boldsymbol{\lambda}}\int_{\boldsymbol{\beta}} p\left(\widehat{y}_{ij}\left|\boldsymbol{\beta}, \boldsymbol{\lambda},\boldsymbol{y}\right.\right) \times p\left(\boldsymbol{\beta}, \boldsymbol{\lambda}\left|\boldsymbol{y}\right.\right) d\boldsymbol{\beta}d\boldsymbol{\lambda} \end{align} \]
where samples from \(p\left(\boldsymbol{\beta}, \boldsymbol{\lambda}\left|\boldsymbol{y}\right.\right)\) are generated via Hamiltonian MCMC (RStan).
Note: Quartiles of \(y_{ij}\): 0.053 / 0.122 / 0.249.
RMSE_1 | RMSE_2 |
---|---|
0.161 | 0.155 |
species | RMSE_1 | RMSE_2 | mean_growth |
---|---|---|---|
Red Oak | 0.230 | 0.238 | 0.386 |
Black/Red Oak hybrid | 0.220 | 0.217 | 0.331 |
Red Maple | 0.196 | 0.180 | 0.227 |
Pignut Hickory | 0.191 | 0.185 | 0.245 |
Black Oak | 0.187 | 0.187 | 0.292 |
White Oak | 0.182 | 0.181 | 0.242 |
Sassafras | 0.160 | 0.170 | 0.269 |
Black Cherry | 0.131 | 0.130 | 0.128 |