This is an R Markdown format used for publishing markdown documents to GitHub. When you click the Knit button all R code chunks are run and a markdown file (.md) suitable for publishing to GitHub is generated.
You can include R code in the document as follows:
airData<-data("airquality")
View(airData)
#check data summary
summary(airData);## Length Class Mode
## 1 character character
#dataset headers name
names(airData)## NULL
Check data quality using #single linear regression model
Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot. #multiple regression model
#create multiple variable regression model
coPlot<-coplot(Ozone~Solar.R|Wind,panel=panel.smooth,airquality)##
## Missing rows: 5, 6, 10, 11, 25, 26, 27, 32, 33, 34, 35, 36, 37, 39, 42, 43, 45, 46, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 65, 72, 75, 83, 84, 96, 97, 98, 102, 103, 107, 115, 119, 150
createModel2<-lm(formula=Ozone~Solar.R*Wind,airquality)
plot(createModel2)summary(airquality$Wind)## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.700 7.400 9.700 9.958 11.500 20.700
summary(airquality$Solar.R)## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 7.0 115.8 205.0 185.9 258.8 334.0 7
solarQuarter1=mean(airquality$Solar.R,na.rm=T)
solarQuarter2=200
solarQuarter3=300
#predict values according to uater
predict1<-predict(createModel2,data.frame(Solar.R=solarQuarter1,Wind=1:20))
predict2<-predict(createModel2,data.frame(Solar.R=solarQuarter2,Wind=1:20))
predict3<-predict(createModel2,data.frame(Solar.R=solarQuarter3,Wind=1:20))
plot(Solar.R~Wind,airquality)
lines(1:20,predict1)
lines(1:20,predict2)
lines(1:20,predict3)