This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

Fertilization at planting influences seedling growth

Hongyu Chen

RPI, RIN:661405156

Oct.11 V1.0

1. Setting

System under test

Data of this test is obtained from an article about influence of fertilization on plants. The aim of this analysis is to test data given in this paper and try to reach a same conclusion as the author’s. Data is from Table2 provided in the article, about response of foliar nutrient concentrations to fertilization treatments. A quick view of this dataset is as below.

data<-read.csv("fertilizer.csv", header=TRUE)
data
##         Species Fertilizer Nitrogen Phosphate Potassium
## 1         Aspen       SR-H     3.30      0.15      1.10
## 2         Aspen       SR-L     2.98      0.15      0.99
## 3         Aspen       FR-H     3.22      0.16      1.08
## 4         Aspen       FR-L     3.12      0.15      1.12
## 5         Aspen       IA-H     2.87      0.16      1.10
## 6         Aspen       IA-L     2.36      0.14      0.88
## 7         Aspen         UC     2.21      0.17      0.79
## 8  White Spruce       SR-H     1.72      0.08      0.54
## 9  White Spruce       SR-L     1.52      0.08      0.55
## 10 White Spruce       FR-H     1.72      0.08      0.61
## 11 White Spruce       FR-L     1.51      0.08      0.53
## 12 White Spruce       IA-H     1.37      0.08      0.60
## 13 White Spruce       IA-L     1.03      0.10      0.56
## 14 White Spruce         UC     0.85      0.08      0.60
summary(data)
##          Species  Fertilizer    Nitrogen      Phosphate    
##  Aspen       :7   FR-H:2     Min.   :0.85   Min.   :0.080  
##  White Spruce:7   FR-L:2     1st Qu.:1.51   1st Qu.:0.080  
##                   IA-H:2     Median :1.97   Median :0.120  
##                   IA-L:2     Mean   :2.13   Mean   :0.119  
##                   SR-H:2     3rd Qu.:2.95   3rd Qu.:0.150  
##                   SR-L:2     Max.   :3.30   Max.   :0.170  
##                   UC  :2                                   
##    Potassium    
##  Min.   :0.530  
##  1st Qu.:0.570  
##  Median :0.700  
##  Mean   :0.789  
##  3rd Qu.:1.058  
##  Max.   :1.120  
## 

Factors and Levels

There are two factors: species and fertilization treatment. In the factor of ‘Species’ there are two species as different levels; in factor of ‘Fertilizer’, there are seven different types of fertilizers as different levels. This is a two factor multiple level model.

Continuous variables (if any)

Nutrition concentrations are continuous variables, in specific are concentration of nitrogen, phosphate and potassium.

Response variables

Concentration of different nutrients are set as response variables, which are ‘Nitrogen’, ‘Phosphate’ and ‘Potassium’ in the data set.

The Data: How is it organized and what does it look like?

Data used in this test is obtained from a published paper, Table 2. Original table is about influence of fertilizer treatment on concentration of nutrients in different species seedlings. Two factors are species and fertilizer treatments.

Randomization

For each experiment a randomized complete block design was employed.

2. (Experimental) Design

How will the experiment be organized and conducted to test the hypothesis?

Read data from csv document, first go through exploratory analysis, then use ANOVA to test the effect of each factor and the combination on response variables. Use Tukey’s multiple pairwise comparison to identify significant differences between fertilizer treatments and model checking methods to check adequacy of a selected model as example. Through that we I hope to examine effect from both factors respectively.

What is the rationale for this design?

Fertilization may alleviate plants nutrient deficiencies but broadcast fertilization with immediately available fertilizers (IAF) results in generally low rates of nutrient recovery for planted trees. Directed application of controlled-release fertilizer (CRF) to the rhizosphere offers an alternative to extend nutrient longevity while reducing nutrient leaching or uptake by competing vegetation. Test about effect of fertilizers is conducted with white spruce and aspen.

Randomize: What is the Randomization Scheme?

For each experiment, a randomized complete block design was employed. Specifically, plant density, numbers of plant population in each block and possible influence from plants nearby are blocked.

Replicate: Are there replicates, blocking and/or repeated measures?

There were four replicate blocks in this design. Each block contained 84 experimental seedlings hand-planted at a spacing of 2m X 2m with each block surrounded by a buffer row of non-experimental seedlings planted at the same density. Also repeated measurement was applied.

3. (Statistical) Analysis

(Exploratory Data Analysis) Graphics and descriptive summary

# Logical vector identifying all factors
spe<-factor(data$Species)
fert<-factor(data$Fertilizer)
Nitrogen<-factor(data$Nitrogen)
# Quick view of samples collected
levels(spe)
## [1] "Aspen"        "White Spruce"
levels(fert)
## [1] "FR-H" "FR-L" "IA-H" "IA-L" "SR-H" "SR-L" "UC"
boxplot(Nitrogen~spe, data=data)

plot of chunk unnamed-chunk-3

boxplot(Nitrogen~fert, data=data)

plot of chunk unnamed-chunk-3

boxplot(Phosphate~spe, data=data)

plot of chunk unnamed-chunk-3

boxplot(Phosphate~fert, data=data)

plot of chunk unnamed-chunk-3

boxplot(Potassium~spe, data=data)

plot of chunk unnamed-chunk-3

boxplot(Potassium~fert, data=data)

plot of chunk unnamed-chunk-3 From boxplots above, different species show an obviously different nutrients concentration, therefore species is probably a factor to explain variance in nutrient concentration, including nitrogen, phosphate and potassium. However, with different fertilizer treatments, nitrogen and potassium concentration vary relatively great, but difference in terms of phosphate median is not that obvious, indicating that fertilizer may be able to partly explain variance of nutrient concentration in plants seedlings.

Testing

ANOVA

#variance of species
modela1=aov(Nitrogen ~ spe, data=data)
anova(modela1)
## Analysis of Variance Table
## 
## Response: Nitrogen
##           Df Sum Sq Mean Sq F value Pr(>F)    
## spe        1   7.64    7.64    52.4  1e-05 ***
## Residuals 12   1.75    0.15                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
modela2=aov(Phosphate ~ spe, data=data) 
anova(modela2)
## Analysis of Variance Table
## 
## Response: Phosphate
##           Df  Sum Sq Mean Sq F value  Pr(>F)    
## spe        1 0.01786 0.01786     234 3.1e-09 ***
## Residuals 12 0.00091 0.00008                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
modela3=aov(Potassium ~ spe, data=data) 
anova(modela3)
## Analysis of Variance Table
## 
## Response: Potassium
##           Df Sum Sq Mean Sq F value  Pr(>F)    
## spe        1  0.673   0.673    76.7 1.5e-06 ***
## Residuals 12  0.105   0.009                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

All P-values are much smaller than 0.05, which means there is very small probability that variance in nutrient concentration with regards to species is due to ramdomization.

#variance of fertilizer
modelb1=aov(Nitrogen ~ fert, data=data)
anova(modelb1)
## Analysis of Variance Table
## 
## Response: Nitrogen
##           Df Sum Sq Mean Sq F value Pr(>F)
## fert       6   1.72   0.286    0.26   0.94
## Residuals  7   7.67   1.096
modelb2=aov(Phosphate ~ fert, data=data) 
anova(modelb2)
## Analysis of Variance Table
## 
## Response: Phosphate
##           Df  Sum Sq  Mean Sq F value Pr(>F)
## fert       6 0.00017 0.000029    0.01      1
## Residuals  7 0.01860 0.002657
modelb3=aov(Potassium ~ fert, data=data) 
anova(modelb3)
## Analysis of Variance Table
## 
## Response: Potassium
##           Df Sum Sq Mean Sq F value Pr(>F)
## fert       6  0.046  0.0077    0.07      1
## Residuals  7  0.732  0.1046

P-values are greater than 0.05, which means basically under such experiment settings, nutrient concentration is independent to fertilizer treatments. Probably each type of fertilizer is able to provide similar amount of nutrients for plants, which may play an important role in plant growth.

#variance of interaction of both factors
modelc1=aov(Nitrogen ~ spe*fert, data=data)
anova(modelc1)
## Warning: ANOVA F-tests on an essentially perfect fit are unreliable
## Analysis of Variance Table
## 
## Response: Nitrogen
##           Df Sum Sq Mean Sq F value Pr(>F)
## spe        1   7.64    7.64               
## fert       6   1.72    0.29               
## spe:fert   6   0.03    0.01               
## Residuals  0   0.00
modelc2=aov(Phosphate ~ spe*fert, data=data) 
anova(modelc2)
## Warning: ANOVA F-tests on an essentially perfect fit are unreliable
## Analysis of Variance Table
## 
## Response: Phosphate
##           Df  Sum Sq Mean Sq F value Pr(>F)
## spe        1 0.01786 0.01786               
## fert       6 0.00017 0.00003               
## spe:fert   6 0.00074 0.00012               
## Residuals  0 0.00000
modelc3=aov(Potassium ~ spe*fert, data=data) 
anova(modelc3)
## Warning: ANOVA F-tests on an essentially perfect fit are unreliable
## Analysis of Variance Table
## 
## Response: Potassium
##           Df Sum Sq Mean Sq F value Pr(>F)
## spe        1  0.673   0.673               
## fert       6  0.046   0.008               
## spe:fert   6  0.059   0.010               
## Residuals  0  0.000

It can be seen that for each type of nutrient, interaction of species and fertilizer treatments leads to a very small P-vale, also there is a warning message: ANOVA F-tests on an essentially perfect fit are unreliable, indicating interaction of species and fertilizer is a nearly perfect model to explain variance of nutrient concentration.

Tukey’s Honest Significant Difference Test

TukeyHSD(modelc1, ordered = FALSE, conf.level = 0.95)
## Warning: 产生了NaNs
## Warning: 产生了NaNs
## Warning: 产生了NaNs
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Nitrogen ~ spe * fert, data = data)
## 
## $spe
##                      diff lwr upr p adj
## White Spruce-Aspen -1.477 NaN NaN   NaN
## 
## $fert
##             diff lwr upr p adj
## FR-L-FR-H -0.155 NaN NaN   NaN
## IA-H-FR-H -0.350 NaN NaN   NaN
## IA-L-FR-H -0.775 NaN NaN   NaN
## SR-H-FR-H  0.040 NaN NaN   NaN
## SR-L-FR-H -0.220 NaN NaN   NaN
## UC-FR-H   -0.940 NaN NaN   NaN
## IA-H-FR-L -0.195 NaN NaN   NaN
## IA-L-FR-L -0.620 NaN NaN   NaN
## SR-H-FR-L  0.195 NaN NaN   NaN
## SR-L-FR-L -0.065 NaN NaN   NaN
## UC-FR-L   -0.785 NaN NaN   NaN
## IA-L-IA-H -0.425 NaN NaN   NaN
## SR-H-IA-H  0.390 NaN NaN   NaN
## SR-L-IA-H  0.130 NaN NaN   NaN
## UC-IA-H   -0.590 NaN NaN   NaN
## SR-H-IA-L  0.815 NaN NaN   NaN
## SR-L-IA-L  0.555 NaN NaN   NaN
## UC-IA-L   -0.165 NaN NaN   NaN
## SR-L-SR-H -0.260 NaN NaN   NaN
## UC-SR-H   -0.980 NaN NaN   NaN
## UC-SR-L   -0.720 NaN NaN   NaN
## 
## $`spe:fert`
##                                           diff lwr upr p adj
## White Spruce:FR-H-Aspen:FR-H        -1.500e+00 NaN NaN   NaN
## Aspen:FR-L-Aspen:FR-H               -1.000e-01 NaN NaN   NaN
## White Spruce:FR-L-Aspen:FR-H        -1.710e+00 NaN NaN   NaN
## Aspen:IA-H-Aspen:FR-H               -3.500e-01 NaN NaN   NaN
## White Spruce:IA-H-Aspen:FR-H        -1.850e+00 NaN NaN   NaN
## Aspen:IA-L-Aspen:FR-H               -8.600e-01 NaN NaN   NaN
## White Spruce:IA-L-Aspen:FR-H        -2.190e+00 NaN NaN   NaN
## Aspen:SR-H-Aspen:FR-H                8.000e-02 NaN NaN   NaN
## White Spruce:SR-H-Aspen:FR-H        -1.500e+00 NaN NaN   NaN
## Aspen:SR-L-Aspen:FR-H               -2.400e-01 NaN NaN   NaN
## White Spruce:SR-L-Aspen:FR-H        -1.700e+00 NaN NaN   NaN
## Aspen:UC-Aspen:FR-H                 -1.010e+00 NaN NaN   NaN
## White Spruce:UC-Aspen:FR-H          -2.370e+00 NaN NaN   NaN
## Aspen:FR-L-White Spruce:FR-H         1.400e+00 NaN NaN   NaN
## White Spruce:FR-L-White Spruce:FR-H -2.100e-01 NaN NaN   NaN
## Aspen:IA-H-White Spruce:FR-H         1.150e+00 NaN NaN   NaN
## White Spruce:IA-H-White Spruce:FR-H -3.500e-01 NaN NaN   NaN
## Aspen:IA-L-White Spruce:FR-H         6.400e-01 NaN NaN   NaN
## White Spruce:IA-L-White Spruce:FR-H -6.900e-01 NaN NaN   NaN
## Aspen:SR-H-White Spruce:FR-H         1.580e+00 NaN NaN   NaN
## White Spruce:SR-H-White Spruce:FR-H -4.441e-16 NaN NaN   NaN
## Aspen:SR-L-White Spruce:FR-H         1.260e+00 NaN NaN   NaN
## White Spruce:SR-L-White Spruce:FR-H -2.000e-01 NaN NaN   NaN
## Aspen:UC-White Spruce:FR-H           4.900e-01 NaN NaN   NaN
## White Spruce:UC-White Spruce:FR-H   -8.700e-01 NaN NaN   NaN
## White Spruce:FR-L-Aspen:FR-L        -1.610e+00 NaN NaN   NaN
## Aspen:IA-H-Aspen:FR-L               -2.500e-01 NaN NaN   NaN
## White Spruce:IA-H-Aspen:FR-L        -1.750e+00 NaN NaN   NaN
## Aspen:IA-L-Aspen:FR-L               -7.600e-01 NaN NaN   NaN
## White Spruce:IA-L-Aspen:FR-L        -2.090e+00 NaN NaN   NaN
## Aspen:SR-H-Aspen:FR-L                1.800e-01 NaN NaN   NaN
## White Spruce:SR-H-Aspen:FR-L        -1.400e+00 NaN NaN   NaN
## Aspen:SR-L-Aspen:FR-L               -1.400e-01 NaN NaN   NaN
## White Spruce:SR-L-Aspen:FR-L        -1.600e+00 NaN NaN   NaN
## Aspen:UC-Aspen:FR-L                 -9.100e-01 NaN NaN   NaN
## White Spruce:UC-Aspen:FR-L          -2.270e+00 NaN NaN   NaN
## Aspen:IA-H-White Spruce:FR-L         1.360e+00 NaN NaN   NaN
## White Spruce:IA-H-White Spruce:FR-L -1.400e-01 NaN NaN   NaN
## Aspen:IA-L-White Spruce:FR-L         8.500e-01 NaN NaN   NaN
## White Spruce:IA-L-White Spruce:FR-L -4.800e-01 NaN NaN   NaN
## Aspen:SR-H-White Spruce:FR-L         1.790e+00 NaN NaN   NaN
## White Spruce:SR-H-White Spruce:FR-L  2.100e-01 NaN NaN   NaN
## Aspen:SR-L-White Spruce:FR-L         1.470e+00 NaN NaN   NaN
## White Spruce:SR-L-White Spruce:FR-L  1.000e-02 NaN NaN   NaN
## Aspen:UC-White Spruce:FR-L           7.000e-01 NaN NaN   NaN
## White Spruce:UC-White Spruce:FR-L   -6.600e-01 NaN NaN   NaN
## White Spruce:IA-H-Aspen:IA-H        -1.500e+00 NaN NaN   NaN
## Aspen:IA-L-Aspen:IA-H               -5.100e-01 NaN NaN   NaN
## White Spruce:IA-L-Aspen:IA-H        -1.840e+00 NaN NaN   NaN
## Aspen:SR-H-Aspen:IA-H                4.300e-01 NaN NaN   NaN
## White Spruce:SR-H-Aspen:IA-H        -1.150e+00 NaN NaN   NaN
## Aspen:SR-L-Aspen:IA-H                1.100e-01 NaN NaN   NaN
## White Spruce:SR-L-Aspen:IA-H        -1.350e+00 NaN NaN   NaN
## Aspen:UC-Aspen:IA-H                 -6.600e-01 NaN NaN   NaN
## White Spruce:UC-Aspen:IA-H          -2.020e+00 NaN NaN   NaN
## Aspen:IA-L-White Spruce:IA-H         9.900e-01 NaN NaN   NaN
## White Spruce:IA-L-White Spruce:IA-H -3.400e-01 NaN NaN   NaN
## Aspen:SR-H-White Spruce:IA-H         1.930e+00 NaN NaN   NaN
## White Spruce:SR-H-White Spruce:IA-H  3.500e-01 NaN NaN   NaN
## Aspen:SR-L-White Spruce:IA-H         1.610e+00 NaN NaN   NaN
## White Spruce:SR-L-White Spruce:IA-H  1.500e-01 NaN NaN   NaN
## Aspen:UC-White Spruce:IA-H           8.400e-01 NaN NaN   NaN
## White Spruce:UC-White Spruce:IA-H   -5.200e-01 NaN NaN   NaN
## White Spruce:IA-L-Aspen:IA-L        -1.330e+00 NaN NaN   NaN
## Aspen:SR-H-Aspen:IA-L                9.400e-01 NaN NaN   NaN
## White Spruce:SR-H-Aspen:IA-L        -6.400e-01 NaN NaN   NaN
## Aspen:SR-L-Aspen:IA-L                6.200e-01 NaN NaN   NaN
## White Spruce:SR-L-Aspen:IA-L        -8.400e-01 NaN NaN   NaN
## Aspen:UC-Aspen:IA-L                 -1.500e-01 NaN NaN   NaN
## White Spruce:UC-Aspen:IA-L          -1.510e+00 NaN NaN   NaN
## Aspen:SR-H-White Spruce:IA-L         2.270e+00 NaN NaN   NaN
## White Spruce:SR-H-White Spruce:IA-L  6.900e-01 NaN NaN   NaN
## Aspen:SR-L-White Spruce:IA-L         1.950e+00 NaN NaN   NaN
## White Spruce:SR-L-White Spruce:IA-L  4.900e-01 NaN NaN   NaN
## Aspen:UC-White Spruce:IA-L           1.180e+00 NaN NaN   NaN
## White Spruce:UC-White Spruce:IA-L   -1.800e-01 NaN NaN   NaN
## White Spruce:SR-H-Aspen:SR-H        -1.580e+00 NaN NaN   NaN
## Aspen:SR-L-Aspen:SR-H               -3.200e-01 NaN NaN   NaN
## White Spruce:SR-L-Aspen:SR-H        -1.780e+00 NaN NaN   NaN
## Aspen:UC-Aspen:SR-H                 -1.090e+00 NaN NaN   NaN
## White Spruce:UC-Aspen:SR-H          -2.450e+00 NaN NaN   NaN
## Aspen:SR-L-White Spruce:SR-H         1.260e+00 NaN NaN   NaN
## White Spruce:SR-L-White Spruce:SR-H -2.000e-01 NaN NaN   NaN
## Aspen:UC-White Spruce:SR-H           4.900e-01 NaN NaN   NaN
## White Spruce:UC-White Spruce:SR-H   -8.700e-01 NaN NaN   NaN
## White Spruce:SR-L-Aspen:SR-L        -1.460e+00 NaN NaN   NaN
## Aspen:UC-Aspen:SR-L                 -7.700e-01 NaN NaN   NaN
## White Spruce:UC-Aspen:SR-L          -2.130e+00 NaN NaN   NaN
## Aspen:UC-White Spruce:SR-L           6.900e-01 NaN NaN   NaN
## White Spruce:UC-White Spruce:SR-L   -6.700e-01 NaN NaN   NaN
## White Spruce:UC-Aspen:UC            -1.360e+00 NaN NaN   NaN
Dataset check
data
##         Species Fertilizer Nitrogen Phosphate Potassium
## 1         Aspen       SR-H     3.30      0.15      1.10
## 2         Aspen       SR-L     2.98      0.15      0.99
## 3         Aspen       FR-H     3.22      0.16      1.08
## 4         Aspen       FR-L     3.12      0.15      1.12
## 5         Aspen       IA-H     2.87      0.16      1.10
## 6         Aspen       IA-L     2.36      0.14      0.88
## 7         Aspen         UC     2.21      0.17      0.79
## 8  White Spruce       SR-H     1.72      0.08      0.54
## 9  White Spruce       SR-L     1.52      0.08      0.55
## 10 White Spruce       FR-H     1.72      0.08      0.61
## 11 White Spruce       FR-L     1.51      0.08      0.53
## 12 White Spruce       IA-H     1.37      0.08      0.60
## 13 White Spruce       IA-L     1.03      0.10      0.56
## 14 White Spruce         UC     0.85      0.08      0.60

Dataset is complete without any missing information, perpaps Tukey’s HSD test cannot be applied to essentially perfit fitted ANOVA. Then try to analyze species and fertilizer respectively, take nitrogen as an example.

Tukey_species<-TukeyHSD(modela1, ordered = FALSE, conf.level = 0.95)
Tukey_species
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Nitrogen ~ spe, data = data)
## 
## $spe
##                      diff    lwr    upr p adj
## White Spruce-Aspen -1.477 -1.922 -1.033     0
Tukey_fertilizer<-TukeyHSD(modelb1, ordered = FALSE, conf.level = 0.95)
Tukey_fertilizer
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Nitrogen ~ fert, data = data)
## 
## $fert
##             diff    lwr   upr  p adj
## FR-L-FR-H -0.155 -4.304 3.994 1.0000
## IA-H-FR-H -0.350 -4.499 3.799 0.9998
## IA-L-FR-H -0.775 -4.924 3.374 0.9844
## SR-H-FR-H  0.040 -4.109 4.189 1.0000
## SR-L-FR-H -0.220 -4.369 3.929 1.0000
## UC-FR-H   -0.940 -5.089 3.209 0.9615
## IA-H-FR-L -0.195 -4.344 3.954 1.0000
## IA-L-FR-L -0.620 -4.769 3.529 0.9950
## SR-H-FR-L  0.195 -3.954 4.344 1.0000
## SR-L-FR-L -0.065 -4.214 4.084 1.0000
## UC-FR-L   -0.785 -4.934 3.364 0.9834
## IA-L-IA-H -0.425 -4.574 3.724 0.9994
## SR-H-IA-H  0.390 -3.759 4.539 0.9996
## SR-L-IA-H  0.130 -4.019 4.279 1.0000
## UC-IA-H   -0.590 -4.739 3.559 0.9961
## SR-H-IA-L  0.815 -3.334 4.964 0.9802
## SR-L-IA-L  0.555 -3.594 4.704 0.9972
## UC-IA-L   -0.165 -4.314 3.984 1.0000
## SR-L-SR-H -0.260 -4.409 3.889 1.0000
## UC-SR-H   -0.980 -5.129 3.169 0.9538
## UC-SR-L   -0.720 -4.869 3.429 0.9892
plot(Tukey_species)

plot of chunk unnamed-chunk-9

plot(Tukey_fertilizer)

plot of chunk unnamed-chunk-9

Tukey’s HSD test can tell us which groups in the sample differ significantly. For individual test if there is a p-adj.value<0.05, then there is a statistical difference between the mean response variables of those two levels, which is because of something other than randomization. Therefore for Tukey’s test of species, p-adj value is smaller than 0.05, demonstrating there is difference between different species levels caused by something other than randomization. However for Tukey’s test of fertilizer, all p-adj values are larger than 0.05, indicating there is no statistical difference between fertilizer samples, and variance is attributed to randomization. This is a similar conclusion as from ANOVA.

Diagnostics/Model Adequacy Checking

Take nitrogen concentration as an example. Set the interaction of species and fertilizer treatments as the model.

modelc1=aov(Nitrogen~spe*fert, data=data)
qqnorm(residuals(modelc1))
qqline(residuals(modelc1))

plot of chunk unnamed-chunk-10

qqnorm plot and qqline of residuals exhibit perfect linear pattern of residuals which are all falling at 0, indicating an essentially perfect model.

interaction.plot(data$Species,data$Fertilizer,data$Nitrogen)

plot of chunk unnamed-chunk-11

Interaction polt does not appear as parallel lines, which means the interaction model is probably adequate to explain variance of nitrogen concentration.

plot(fitted(modelc1),residuals(modelc1))

plot of chunk unnamed-chunk-12

Plot of fitted model and residuals model shows residuals are exactly distributed at 0, indicating a perfect model.

4. References to the literature

http://link.springer.com/article/10.1007/s11056-013-9378-4

5. Appendices

A summary of, or pointer to, the raw data

Fertilization at planting influences seedling growth and vegetative competition on a post-mining boreal reclamation site Joshua L. Sloan, Douglass F. Jacobs http://link.springer.com/article/10.1007/s11056-013-9378-4