Introducción de datos

Vectores
v1 <-c(100, 500, 900, 225, 25)
v1
## [1] 100 500 900 225  25
v2 <-c("uno", "dos", "tres", "cuatro")
v2
## [1] "uno"    "dos"    "tres"   "cuatro"
v1[1:3]
## [1] 100 500 900
v1*5
## [1]  500 2500 4500 1125  125
v1[-1]
## [1] 500 900 225  25
v1[c(1,3,5)]
## [1] 100 900  25
v1[-c(3)]
## [1] 100 500 225  25
data <-c(1, 2, 2, 2, 3, 3, 3, 3)
fdata <- factor(data)
fdata
## [1] 1 2 2 2 3 3 3 3
## Levels: 1 2 3
factor(1:3, labels = c("A", "B", "C"))
## [1] A B C
## Levels: A B C
factor(1:5, exclude = 4)
## [1] 1    2    3    <NA> 5   
## Levels: 1 2 3 5
data1 <-c(10, 20, 20, 50, 10, 20, 10, 50, 20)
fdata1 <-factor(data1)
mdata1 <-factor(data1, levels<- c(10, 20, 50), ordered = TRUE)
mdata1
## [1] 10 20 20 50 10 20 10 50 20
## Levels: 10 < 20 < 50
Matrices
A <-matrix(c(3, 2, 1, -1, 4, 0, 2, 5, 4), nrow = 3, ncol = 3, byrow =T)
A
##      [,1] [,2] [,3]
## [1,]    3    2    1
## [2,]   -1    4    0
## [3,]    2    5    4
U <-matrix(1, nrow = 3, ncol = 4)
U
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## [2,]    1    1    1    1
## [3,]    1    1    1    1
I5 <-diag(A)
I5
## [1] 3 4 4
D <-diag(A)
D
## [1] 3 4 4
solve(A)
##             [,1]        [,2]        [,3]
## [1,]  0.37209302 -0.06976744 -0.09302326
## [2,]  0.09302326  0.23255814 -0.02325581
## [3,] -0.30232558 -0.25581395  0.32558140
t(A)
##      [,1] [,2] [,3]
## [1,]    3   -1    2
## [2,]    2    4    5
## [3,]    1    0    4
M <-matrix(c(1, 2, 3, 4, 5, 6), nrow = 2, ncol = 3, byrow =T,
           dimnames = list(c("Supermercado", "Tienda"),
                           c("Frutas", "Verduras", "Bebidas")))
M
##              Frutas Verduras Bebidas
## Supermercado      1        2       3
## Tienda            4        5       6
M1 <-matrix(1:4, 2, 2)
M1
##      [,1] [,2]
## [1,]    1    3
## [2,]    2    4
M2 <-matrix(5:8, 2, 2)
M2
##      [,1] [,2]
## [1,]    5    7
## [2,]    6    8
M3 <-matrix(9:12, 2, 2)
M3
##      [,1] [,2]
## [1,]    9   11
## [2,]   10   12
rbind(M1, M2, M3)
##      [,1] [,2]
## [1,]    1    3
## [2,]    2    4
## [3,]    5    7
## [4,]    6    8
## [5,]    9   11
## [6,]   10   12
cbind(M1, M2, M3)
##      [,1] [,2] [,3] [,4] [,5] [,6]
## [1,]    1    3    5    7    9   11
## [2,]    2    4    6    8   10   12
Arrays
array(1:5, c(2, 3))
##      [,1] [,2] [,3]
## [1,]    1    3    5
## [2,]    2    4    1
array(1:5, c(2, 2))
##      [,1] [,2]
## [1,]    1    3
## [2,]    2    4
array(1:5, c(2, 3, 3))
## , , 1
## 
##      [,1] [,2] [,3]
## [1,]    1    3    5
## [2,]    2    4    1
## 
## , , 2
## 
##      [,1] [,2] [,3]
## [1,]    2    4    1
## [2,]    3    5    2
## 
## , , 3
## 
##      [,1] [,2] [,3]
## [1,]    3    5    2
## [2,]    4    1    3
array(1:5, c(2, 3, 4))
## , , 1
## 
##      [,1] [,2] [,3]
## [1,]    1    3    5
## [2,]    2    4    1
## 
## , , 2
## 
##      [,1] [,2] [,3]
## [1,]    2    4    1
## [2,]    3    5    2
## 
## , , 3
## 
##      [,1] [,2] [,3]
## [1,]    3    5    2
## [2,]    4    1    3
## 
## , , 4
## 
##      [,1] [,2] [,3]
## [1,]    4    1    3
## [2,]    5    2    4
array(1:5, c(2, 3, 5))
## , , 1
## 
##      [,1] [,2] [,3]
## [1,]    1    3    5
## [2,]    2    4    1
## 
## , , 2
## 
##      [,1] [,2] [,3]
## [1,]    2    4    1
## [2,]    3    5    2
## 
## , , 3
## 
##      [,1] [,2] [,3]
## [1,]    3    5    2
## [2,]    4    1    3
## 
## , , 4
## 
##      [,1] [,2] [,3]
## [1,]    4    1    3
## [2,]    5    2    4
## 
## , , 5
## 
##      [,1] [,2] [,3]
## [1,]    5    2    4
## [2,]    1    3    5
Listas
lista1 <-list(nombre = "José", "María", no.Hijos =c(10, 12, 34))
lista1
## $nombre
## [1] "José"
## 
## [[2]]
## [1] "María"
## 
## $no.Hijos
## [1] 10 12 34
DataFrames
IDpacientes<- c(1, 2, 3, 4)
Edad <- c(25, 27, 28, 27)
Diabetes <-c("Tipo1", "Tipo2", "Tipo3", "Tipo2")
Estado <- c("Malo", "Mejorado", "Excelente", "Malo")
datos1 <- data.frame(IDpacientes, Edad, Diabetes, Estado)
datos1
##   IDpacientes Edad Diabetes    Estado
## 1           1   25    Tipo1      Malo
## 2           2   27    Tipo2  Mejorado
## 3           3   28    Tipo3 Excelente
## 4           4   27    Tipo2      Malo
Alumno <- c("Pérez", "Gonzáles", "Rodriguez", "Alonso", "López",
            "Tello", "Dominguez")
Altura <- c(1.81, 1.70, 1.75, 1.90, 1.85, 1.75, 1.81)
Peso <- c(85, 72, 80, 95, 85, 72, 84)
data3 <-data.frame(Alumno, Altura, Peso)
data3
##      Alumno Altura Peso
## 1     Pérez   1.81   85
## 2  Gonzáles   1.70   72
## 3 Rodriguez   1.75   80
## 4    Alonso   1.90   95
## 5     López   1.85   85
## 6     Tello   1.75   72
## 7 Dominguez   1.81   84
mean(Altura)
## [1] 1.795714
mean(Peso)
## [1] 81.85714
library(vcd)
## Loading required package: grid
data("Arthritis")
str(Arthritis)
## 'data.frame':    84 obs. of  5 variables:
##  $ ID       : int  57 46 77 17 36 23 75 39 33 55 ...
##  $ Treatment: Factor w/ 2 levels "Placebo","Treated": 2 2 2 2 2 2 2 2 2 2 ...
##  $ Sex      : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ...
##  $ Age      : int  27 29 30 32 46 58 59 59 63 63 ...
##  $ Improved : Ord.factor w/ 3 levels "None"<"Some"<..: 2 1 1 3 3 3 1 3 1 1 ...
conteo <- table(Arthritis$Sex)
conteo
## 
## Female   Male 
##     59     25
barplot(conteo, main = "Gráfico de Barras",
        xlab = "Mejoramiento",
        ylab = "Frecuencia",
        col = "red")

library(ggplot2)
ggplot(Arthritis, aes(x=Sex, fill = factor(Sex)))+geom_bar()+
  labs(fill = "Sex")

ggplot(Arthritis, aes(x=Improved, fill = factor(Improved)))+
  geom_bar()+
  ggtitle("Respuesta al Tratamiento")+
  xlab("Tratamiento")+
  ylab("Frecuecnia")+
  labs(fill = "Improved")

ggplot(Arthritis, aes(x=Improved, fill = factor(Improved)))+
  geom_bar()+
  ggtitle("Respuesta al Tratamiento")+
  xlab("Tratamiento")+
  ylab("Frecuecnia")+
  labs(fill = "Improved")+
  coord_flip()

ggplot(Arthritis, aes(x=Treatment, fill = factor(Improved)))+
  geom_bar()+
  xlab("Tratamiento")+
  ylab("Frecuencia")+
  labs(fill = "Improved")

ggplot(Arthritis, aes(x=Treatment, fill = factor(Improved)))+
  geom_bar()

ggplot(Arthritis, aes(x=Treatment, fill = factor(Improved)))+
  geom_bar(position = "dodge")+
  ggtitle("Gráfico de barras agrupadas")+
  xlab("Tratamiento")+
  ylab("Frecuencia")+
  labs(fill = "Improved")