Use grocery dataset and find frequently sell item along with another item.
#data(package="arules")
loadData<-read.transactions(file="/home/sushil/Desktop/grocery.csv",sep=',');
#converTransactions<-as(loadData,"transactions")
summary(loadData)## transactions as itemMatrix in sparse format with
## 9836 rows (elements/itemsets/transactions) and
## 169 columns (items) and a density of 0.0260888
##
## most frequent items:
## whole milk other vegetables rolls/buns soda
## 2513 1903 1809 1715
## yogurt (Other)
## 1372 34055
##
## element (itemset/transaction) length distribution:
## sizes
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
## 1 2159 1643 1299 1005 855 645 545 438 350 246 182 117 78 77
## 15 16 17 18 19 20 21 22 23 24 26 27 28 29 32
## 55 46 29 14 14 9 11 4 6 1 1 1 1 3 1
##
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 2.000 3.000 4.409 6.000 32.000
##
## includes extended item information - examples:
## labels
## 1 abrasive cleaner
## 2 artif. sweetener
## 3 baby cosmetics
insepect is used for view all transaction in data.We can view any particular rows using inspect itemFrequecny is a support by using this we can see items occuring frequency item has high suppport show that items transaction is maximum
## items
## [1] {citrus fruit,
## margarine,
## ready soups,
## semi-finished bread}
## [2] {coffee,
## tropical fruit,
## yogurt}
## [3] {whole milk}
## [4] {cream cheese,
## meat spreads,
## pip fruit,
## yogurt}
## [5] {condensed milk,
## long life bakery product,
## other vegetables,
## whole milk}
## [6] {abrasive cleaner,
## butter,
## rice,
## whole milk,
## yogurt}
## [7] {rolls/buns}
## [8] {bottled beer,
## liquor (appetizer),
## other vegetables,
## rolls/buns,
## UHT-milk}
## [9] {pot plants}
## [10] {cereals,
## whole milk}
## Apriori
##
## Parameter specification:
## confidence minval smax arem aval originalSupport maxtime support minlen
## 0.055 0.1 1 none FALSE TRUE 5 0.05 2
## maxlen target ext
## 10 rules FALSE
##
## Algorithmic control:
## filter tree heap memopt load sort verbose
## 0.1 TRUE TRUE FALSE TRUE 2 TRUE
##
## Absolute minimum support count: 491
##
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[169 item(s), 9836 transaction(s)] done [0.00s].
## sorting and recoding items ... [28 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 done [0.00s].
## writing ... [6 rule(s)] done [0.00s].
## creating S4 object ... done [0.00s].
## lhs rhs support confidence
## [1] {yogurt} => {whole milk} 0.05601871 0.4016035
## [2] {whole milk} => {yogurt} 0.05601871 0.2192598
## [3] {other vegetables} => {whole milk} 0.07482717 0.3867578
## [4] {whole milk} => {other vegetables} 0.07482717 0.2928770
## [5] {whole milk} => {rolls/buns} 0.05662871 0.2216474
## lift count
## [1] 1.571895 551
## [2] 1.571895 551
## [3] 1.513788 736
## [4] 1.513788 736
## [5] 1.205154 557
Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.