library(dplyr)
library(ggplot2)
library(knitr)
library(tidyr)
Comments: * Employees interests can change over time. * Scenarios are plentiful in this dataset, so finding 1 interesting “thing” would be the absolute minimum.
# employee info (year.month)
e2.09.12 <- read.csv("dataset2/LDAP/2009-12.csv")
e2.10.01 <- read.csv("dataset2/LDAP/2010-01.csv")
e2.10.02 <- read.csv("dataset2/LDAP/2010-02.csv")
e2.10.03 <- read.csv("dataset2/LDAP/2010-03.csv")
e2.10.04 <- read.csv("dataset2/LDAP/2010-04.csv")
e2.10.05 <- read.csv("dataset2/LDAP/2010-05.csv")
e2.10.06 <- read.csv("dataset2/LDAP/2010-06.csv")
e2.10.07 <- read.csv("dataset2/LDAP/2010-07.csv")
e2.10.08 <- read.csv("dataset2/LDAP/2010-08.csv")
e2.10.09 <- read.csv("dataset2/LDAP/2010-09.csv")
e2.10.10 <- read.csv("dataset2/LDAP/2010-10.csv")
e2.10.11 <- read.csv("dataset2/LDAP/2010-11.csv")
e2.10.12 <- read.csv("dataset2/LDAP/2010-12.csv")
e2.11.01 <- read.csv("dataset2/LDAP/2011-01.csv")
e2.11.02 <- read.csv("dataset2/LDAP/2011-02.csv")
e2.11.03 <- read.csv("dataset2/LDAP/2011-03.csv")
e2.11.04 <- read.csv("dataset2/LDAP/2011-04.csv")
e2.11.05 <- read.csv("dataset2/LDAP/2011-05.csv")
Dates: December 2009 - May 2011