Case

1PL - RASCH

library(ltm)
## Loading required package: MASS
## Loading required package: msm
## Loading required package: polycor
head(Mobility)
##   Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8
## 1      1      1      1      1      0      0      0      0
## 2      0      0      0      0      0      0      0      0
## 3      0      0      0      0      0      0      0      0
## 4      0      0      0      0      0      0      0      0
## 5      0      0      0      0      0      0      0      0
## 6      0      0      0      0      0      0      0      0
my1pl<-rasch(Mobility)
summary(my1pl)
## 
## Call:
## rasch(data = Mobility)
## 
## Model Summary:
##    log.Lik      AIC      BIC
##  -23416.48 46850.96 46914.33
## 
## Coefficients:
##                 value std.err   z.vals
## Dffclt.Item 1 -1.0101  0.0201 -50.1740
## Dffclt.Item 2  0.5562  0.0177  31.4822
## Dffclt.Item 3 -0.8258  0.0188 -43.8296
## Dffclt.Item 4  0.3877  0.0170  22.7803
## Dffclt.Item 5  1.8517  0.0300  61.8094
## Dffclt.Item 6  1.4935  0.0253  58.9716
## Dffclt.Item 7  2.0434  0.0330  61.9871
## Dffclt.Item 8  1.6861  0.0277  60.9246
## Dscrmn         2.4985  0.0353  70.7925
## 
## Integration:
## method: Gauss-Hermite
## quadrature points: 21 
## 
## Optimization:
## Convergence: 0 
## max(|grad|): 0.09 
## quasi-Newton: BFGS
#Now plot ICC and IIC for 1pl model.
plot(my1pl, type = "ICC")

plot(my1pl, type = "IIC", items=0)

2PL

my2pl <- ltm(Mobility ~ z1)
summary(my2pl)
## 
## Call:
## ltm(formula = Mobility ~ z1)
## 
## Model Summary:
##    log.Lik      AIC      BIC
##  -23141.71 46315.43 46428.09
## 
## Coefficients:
##                 value std.err   z.vals
## Dffclt.Item 1 -1.0836  0.0280 -38.7067
## Dffclt.Item 2  0.6314  0.0206  30.6227
## Dffclt.Item 3 -1.0249  0.0313 -32.7756
## Dffclt.Item 4  0.4003  0.0168  23.8700
## Dffclt.Item 5  1.6302  0.0290  56.3001
## Dffclt.Item 6  1.4018  0.0260  53.8161
## Dffclt.Item 7  1.6988  0.0323  52.6558
## Dffclt.Item 8  1.5846  0.0298  53.1201
## Dscrmn.Item 1  2.1087  0.0915  23.0466
## Dscrmn.Item 2  2.0580  0.0675  30.4949
## Dscrmn.Item 3  1.5086  0.0573  26.3384
## Dscrmn.Item 4  3.0100  0.1245  24.1866
## Dscrmn.Item 5  3.9761  0.2116  18.7936
## Dscrmn.Item 6  3.1384  0.1294  24.2557
## Dscrmn.Item 7  5.8162  0.4526  12.8517
## Dscrmn.Item 8  3.0220  0.1273  23.7312
## 
## Integration:
## method: Gauss-Hermite
## quadrature points: 21 
## 
## Optimization:
## Convergence: 0 
## max(|grad|): 0.17 
## quasi-Newton: BFGS
#Now plot ICC and IIC for 2pl model.
plot(my2pl, type = "ICC")

plot(my2pl, type = "IIC", items=0)

3PL

my3pl <- tpm(Mobility)
summary(my3pl)
## 
## Call:
## tpm(data = Mobility)
## 
## Model Summary:
##    log.Lik      AIC      BIC
##  -23079.63 46207.26 46376.25
## 
## Coefficients:
##                 value std.err   z.vals
## Gussng.Item 1  0.0003  0.0046   0.0738
## Gussng.Item 2  0.0000  0.0000   0.0011
## Gussng.Item 3  0.1703  0.0769   2.2148
## Gussng.Item 4  0.0144  0.0073   1.9735
## Gussng.Item 5  0.0010  0.0006   1.5186
## Gussng.Item 6  0.0109  0.0026   4.2529
## Gussng.Item 7  0.0000     NaN      NaN
## Gussng.Item 8  0.0098  0.0016   6.2617
## Dffclt.Item 1 -1.0535  0.0287 -36.7111
## Dffclt.Item 2  0.6417  0.0207  30.9792
## Dffclt.Item 3 -0.7342  0.1390  -5.2831
## Dffclt.Item 4  0.4311  0.0203  21.2520
## Dffclt.Item 5  1.6204  0.0274  59.2193
## Dffclt.Item 6  1.4032  0.0227  61.7952
## Dffclt.Item 7  1.7004  0.0301  56.5572
## Dffclt.Item 8  1.5396  0.0264  58.3250
## Dscrmn.Item 1  2.2874  0.1207  18.9563
## Dscrmn.Item 2  2.0446  0.0663  30.8468
## Dscrmn.Item 3  1.7552  0.1461  12.0163
## Dscrmn.Item 4  3.2317  0.1865  17.3307
## Dscrmn.Item 5  4.3157  0.2605  16.5653
## Dscrmn.Item 6  4.0670  0.3265  12.4575
## Dscrmn.Item 7  5.6933  0.3913  14.5495
## Dscrmn.Item 8  4.4889  0.3208  13.9927
## 
## Integration:
## method: Gauss-Hermite
## quadrature points: 21 
## 
## Optimization:
## Optimizer: optim (BFGS)
## Convergence: 0 
## max(|grad|): 0.16
#Now plot ICC and IIC for 3pl model.
plot(my3pl, type = "ICC")

plot(my3pl, type = "IIC", items=0)

Model Comparison

1PL vs 2 PL

anova(my1pl, my2pl)
## 
##  Likelihood Ratio Table
##            AIC      BIC   log.Lik    LRT df p.value
## my1pl 46850.96 46914.33 -23416.48                  
## my2pl 46315.43 46428.09 -23141.71 549.53  7  <0.001
#(the smaller the better!)

2PL vs 3 PL

anova(my2pl, my3pl)
## 
##  Likelihood Ratio Table
##            AIC      BIC   log.Lik    LRT df p.value
## my2pl 46315.43 46428.09 -23141.71                  
## my3pl 46207.26 46376.25 -23079.63 124.17  8  <0.001

3PL the smaller and better model

IRT vs CTT scoring

resp<-matrix(c(1,1,1,1,0,1,0,1), nrow=1)
factor.scores(my2pl, method="EAP", resp.patterns=resp)
## 
## Call:
## ltm(formula = Mobility ~ z1)
## 
## Scoring Method: Expected A Posteriori
## 
## Factor-Scores for specified response patterns:
##     Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8 Obs    Exp
## Exp      1      1      1      1      0      1      0      1  43 77.367
##        z1 se.z1
## Exp 1.361 0.204
#EXPLAIN: “$” addressing
#theta = dataCAT$score.dat$z1
#sem = dataCAT$score.dat$se.z1

mobIRT <- factor.scores(my3pl, resp.patterns=Mobility, method="EAP")

#Compare IRT and CTT scores

CTT_scores <- rowSums(Mobility)
IRT_scores <- mobIRT$score.dat$z1
plot(IRT_scores, CTT_scores)

#Plot the standard error and scores
IRT_errors <- mobIRT$score.dat$se.z1
plot(IRT_scores, IRT_errors, type="p")

Comparison IRT 3PL Vs CTT Score Table

IRT.score.3pl<- factor.scores(my3pl, resp.patterns=Mobility, method="EAP")
theta3.pl<- IRT.score.3pl$score.dat$z1


Mobility$score <- rowSums(Mobility[,1:8])
mydf <- data.frame(Mobility, theta = theta3.pl)
mydf1<- mydf[order(mydf$score,mydf$theta),]

options(digits = 3)
knitr::kable(subset(mydf1, subset = mydf1$score == 7), 
             caption = 'There are several different patterns all with a score of 7')
There are several different patterns all with a score of 7
Item.1 Item.2 Item.3 Item.4 Item.5 Item.6 Item.7 Item.8 score theta
91 1 1 1 1 1 1 0 1 7 1.72
145 1 1 1 1 1 1 0 1 7 1.72
477 1 1 1 1 1 1 0 1 7 1.72
482 1 1 1 1 1 1 0 1 7 1.72
645 1 1 1 1 1 1 0 1 7 1.72
676 1 1 1 1 1 1 0 1 7 1.72
980 1 1 1 1 1 1 0 1 7 1.72
1346 1 1 1 1 1 1 0 1 7 1.72
2119 1 1 1 1 1 1 0 1 7 1.72
2130 1 1 1 1 1 1 0 1 7 1.72
2195 1 1 1 1 1 1 0 1 7 1.72
2246 1 1 1 1 1 1 0 1 7 1.72
2292 1 1 1 1 1 1 0 1 7 1.72
2345 1 1 1 1 1 1 0 1 7 1.72
2613 1 1 1 1 1 1 0 1 7 1.72
2618 1 1 1 1 1 1 0 1 7 1.72
2625 1 1 1 1 1 1 0 1 7 1.72
2656 1 1 1 1 1 1 0 1 7 1.72
2754 1 1 1 1 1 1 0 1 7 1.72
2916 1 1 1 1 1 1 0 1 7 1.72
2953 1 1 1 1 1 1 0 1 7 1.72
3011 1 1 1 1 1 1 0 1 7 1.72
3043 1 1 1 1 1 1 0 1 7 1.72
3211 1 1 1 1 1 1 0 1 7 1.72
3400 1 1 1 1 1 1 0 1 7 1.72
3538 1 1 1 1 1 1 0 1 7 1.72
3770 1 1 1 1 1 1 0 1 7 1.72
3935 1 1 1 1 1 1 0 1 7 1.72
5078 1 1 1 1 1 1 0 1 7 1.72
5149 1 1 1 1 1 1 0 1 7 1.72
5151 1 1 1 1 1 1 0 1 7 1.72
5173 1 1 1 1 1 1 0 1 7 1.72
5418 1 1 1 1 1 1 0 1 7 1.72
5828 1 1 1 1 1 1 0 1 7 1.72
5902 1 1 1 1 1 1 0 1 7 1.72
6302 1 1 1 1 1 1 0 1 7 1.72
6336 1 1 1 1 1 1 0 1 7 1.72
6340 1 1 1 1 1 1 0 1 7 1.72
6346 1 1 1 1 1 1 0 1 7 1.72
6456 1 1 1 1 1 1 0 1 7 1.72
6516 1 1 1 1 1 1 0 1 7 1.72
6664 1 1 1 1 1 1 0 1 7 1.72
6797 1 1 1 1 1 1 0 1 7 1.72
7051 1 1 1 1 1 1 0 1 7 1.72
7159 1 1 1 1 1 1 0 1 7 1.72
7205 1 1 1 1 1 1 0 1 7 1.72
7591 1 1 1 1 1 1 0 1 7 1.72
7602 1 1 1 1 1 1 0 1 7 1.72
7954 1 1 1 1 1 1 0 1 7 1.72
8001 1 1 1 1 1 1 0 1 7 1.72
8087 1 1 1 1 1 1 0 1 7 1.72
8330 1 1 1 1 1 1 0 1 7 1.72
448 1 1 1 1 1 1 1 0 7 1.86
2719 1 1 1 1 1 1 1 0 7 1.86
2731 1 1 1 1 1 1 1 0 7 1.86
2928 1 1 1 1 1 1 1 0 7 1.86
3544 1 1 1 1 1 1 1 0 7 1.86
4543 1 1 1 1 1 1 1 0 7 1.86
5076 1 1 1 1 1 1 1 0 7 1.86
5077 1 1 1 1 1 1 1 0 7 1.86
5596 1 1 1 1 1 1 1 0 7 1.86
6492 1 1 1 1 1 1 1 0 7 1.86
6735 1 1 1 1 1 1 1 0 7 1.86
6784 1 1 1 1 1 1 1 0 7 1.86
6827 1 1 1 1 1 1 1 0 7 1.86
7163 1 1 1 1 1 1 1 0 7 1.86
7766 1 1 1 1 1 1 1 0 7 1.86
7790 1 1 1 1 1 1 1 0 7 1.86
7927 1 1 1 1 1 1 1 0 7 1.86
7962 1 1 1 1 1 1 1 0 7 1.86
7975 1 1 1 1 1 1 1 0 7 1.86
7984 1 1 1 1 1 1 1 0 7 1.86
7992 1 1 1 1 1 1 1 0 7 1.86
8002 1 1 1 1 1 1 1 0 7 1.86
8106 1 1 1 1 1 1 1 0 7 1.86
8299 1 1 1 1 1 1 1 0 7 1.86
8362 1 1 1 1 1 1 1 0 7 1.86
8363 1 1 1 1 1 1 1 0 7 1.86
8365 1 1 1 1 1 1 1 0 7 1.86
8417 1 1 1 1 1 1 1 0 7 1.86
106 1 1 1 1 0 1 1 1 7 1.88
669 1 1 1 1 0 1 1 1 7 1.88
1018 1 1 1 1 0 1 1 1 7 1.88
1741 1 1 1 1 0 1 1 1 7 1.88
2099 1 1 1 1 0 1 1 1 7 1.88
2361 1 1 1 1 0 1 1 1 7 1.88
2878 1 1 1 1 0 1 1 1 7 1.88
3021 1 1 1 1 0 1 1 1 7 1.88
3057 1 1 1 1 0 1 1 1 7 1.88
3086 1 1 1 1 0 1 1 1 7 1.88
3118 1 1 1 1 0 1 1 1 7 1.88
3154 1 1 1 1 0 1 1 1 7 1.88
3170 1 1 1 1 0 1 1 1 7 1.88
3183 1 1 1 1 0 1 1 1 7 1.88
3206 1 1 1 1 0 1 1 1 7 1.88
3529 1 1 1 1 0 1 1 1 7 1.88
3547 1 1 1 1 0 1 1 1 7 1.88
4337 1 1 1 1 0 1 1 1 7 1.88
4408 1 1 1 1 0 1 1 1 7 1.88
4419 1 1 1 1 0 1 1 1 7 1.88
4626 1 1 1 1 0 1 1 1 7 1.88
4747 1 1 1 1 0 1 1 1 7 1.88
4935 1 1 1 1 0 1 1 1 7 1.88
5229 1 1 1 1 0 1 1 1 7 1.88
5230 1 1 1 1 0 1 1 1 7 1.88
5693 1 1 1 1 0 1 1 1 7 1.88
6770 1 1 1 1 0 1 1 1 7 1.88
6787 1 1 1 1 0 1 1 1 7 1.88
7021 1 1 1 1 0 1 1 1 7 1.88
7588 1 1 1 1 0 1 1 1 7 1.88
7624 1 1 1 1 0 1 1 1 7 1.88
7633 1 1 1 1 0 1 1 1 7 1.88
7645 1 1 1 1 0 1 1 1 7 1.88
7650 1 1 1 1 0 1 1 1 7 1.88
7666 1 1 1 1 0 1 1 1 7 1.88
7675 1 1 1 1 0 1 1 1 7 1.88
2169 1 1 1 1 1 0 1 1 7 1.90
2176 1 1 1 1 1 0 1 1 7 1.90
2527 1 1 1 1 1 0 1 1 7 1.90
3082 1 1 1 1 1 0 1 1 7 1.90
6218 1 1 1 1 1 0 1 1 7 1.90
6306 1 1 1 1 1 0 1 1 7 1.90
6319 1 1 1 1 1 0 1 1 7 1.90
6771 1 1 1 1 1 0 1 1 7 1.90
7513 1 1 1 1 1 0 1 1 7 1.90
97 1 0 1 1 1 1 1 1 7 2.05
150 1 0 1 1 1 1 1 1 7 2.05
512 1 0 1 1 1 1 1 1 7 2.05
1978 1 0 1 1 1 1 1 1 7 2.05
2341 1 0 1 1 1 1 1 1 7 2.05
3779 1 0 1 1 1 1 1 1 7 2.05
4398 1 0 1 1 1 1 1 1 7 2.05
4418 1 0 1 1 1 1 1 1 7 2.05
4704 1 0 1 1 1 1 1 1 7 2.05
4731 1 0 1 1 1 1 1 1 7 2.05
5809 1 0 1 1 1 1 1 1 7 2.05
6536 1 0 1 1 1 1 1 1 7 2.05
6629 1 0 1 1 1 1 1 1 7 2.05
6841 1 0 1 1 1 1 1 1 7 2.05
6842 1 0 1 1 1 1 1 1 7 2.05
6844 1 0 1 1 1 1 1 1 7 2.05
7167 1 0 1 1 1 1 1 1 7 2.05
8098 1 0 1 1 1 1 1 1 7 2.05

Comparison IRT 1PL Vs CTT Score Table

data<-Mobility[,1:8]
IRT.score.1pl<- factor.scores(my1pl, resp.patterns=data, method="EAP")
theta1.pl<- IRT.score.1pl$score.dat$z1


Mobility$score <- rowSums(Mobility[,1:8])
mydf <- data.frame(Mobility, theta = theta1.pl)
mydf2<- mydf[order(mydf$score,mydf$theta),]

options(digits = 3)
knitr::kable(subset(mydf2, subset = mydf2$score == 7), 
             caption = 'There are several different patterns all with a score of 7')
There are several different patterns all with a score of 7
Item.1 Item.2 Item.3 Item.4 Item.5 Item.6 Item.7 Item.8 score theta
91 1 1 1 1 1 1 0 1 7 1.94
145 1 1 1 1 1 1 0 1 7 1.94
477 1 1 1 1 1 1 0 1 7 1.94
482 1 1 1 1 1 1 0 1 7 1.94
645 1 1 1 1 1 1 0 1 7 1.94
676 1 1 1 1 1 1 0 1 7 1.94
980 1 1 1 1 1 1 0 1 7 1.94
1346 1 1 1 1 1 1 0 1 7 1.94
2119 1 1 1 1 1 1 0 1 7 1.94
2130 1 1 1 1 1 1 0 1 7 1.94
2195 1 1 1 1 1 1 0 1 7 1.94
2246 1 1 1 1 1 1 0 1 7 1.94
2292 1 1 1 1 1 1 0 1 7 1.94
2345 1 1 1 1 1 1 0 1 7 1.94
2613 1 1 1 1 1 1 0 1 7 1.94
2618 1 1 1 1 1 1 0 1 7 1.94
2625 1 1 1 1 1 1 0 1 7 1.94
2656 1 1 1 1 1 1 0 1 7 1.94
2754 1 1 1 1 1 1 0 1 7 1.94
2916 1 1 1 1 1 1 0 1 7 1.94
2953 1 1 1 1 1 1 0 1 7 1.94
3011 1 1 1 1 1 1 0 1 7 1.94
3043 1 1 1 1 1 1 0 1 7 1.94
3211 1 1 1 1 1 1 0 1 7 1.94
3400 1 1 1 1 1 1 0 1 7 1.94
3538 1 1 1 1 1 1 0 1 7 1.94
3770 1 1 1 1 1 1 0 1 7 1.94
3935 1 1 1 1 1 1 0 1 7 1.94
5078 1 1 1 1 1 1 0 1 7 1.94
5149 1 1 1 1 1 1 0 1 7 1.94
5151 1 1 1 1 1 1 0 1 7 1.94
5173 1 1 1 1 1 1 0 1 7 1.94
5418 1 1 1 1 1 1 0 1 7 1.94
5828 1 1 1 1 1 1 0 1 7 1.94
5902 1 1 1 1 1 1 0 1 7 1.94
6302 1 1 1 1 1 1 0 1 7 1.94
6336 1 1 1 1 1 1 0 1 7 1.94
6340 1 1 1 1 1 1 0 1 7 1.94
6346 1 1 1 1 1 1 0 1 7 1.94
6456 1 1 1 1 1 1 0 1 7 1.94
6516 1 1 1 1 1 1 0 1 7 1.94
6664 1 1 1 1 1 1 0 1 7 1.94
6797 1 1 1 1 1 1 0 1 7 1.94
7051 1 1 1 1 1 1 0 1 7 1.94
7159 1 1 1 1 1 1 0 1 7 1.94
7205 1 1 1 1 1 1 0 1 7 1.94
7591 1 1 1 1 1 1 0 1 7 1.94
7602 1 1 1 1 1 1 0 1 7 1.94
7954 1 1 1 1 1 1 0 1 7 1.94
8001 1 1 1 1 1 1 0 1 7 1.94
8087 1 1 1 1 1 1 0 1 7 1.94
8330 1 1 1 1 1 1 0 1 7 1.94
448 1 1 1 1 1 1 1 0 7 1.94
2719 1 1 1 1 1 1 1 0 7 1.94
2731 1 1 1 1 1 1 1 0 7 1.94
2928 1 1 1 1 1 1 1 0 7 1.94
3544 1 1 1 1 1 1 1 0 7 1.94
4543 1 1 1 1 1 1 1 0 7 1.94
5076 1 1 1 1 1 1 1 0 7 1.94
5077 1 1 1 1 1 1 1 0 7 1.94
5596 1 1 1 1 1 1 1 0 7 1.94
6492 1 1 1 1 1 1 1 0 7 1.94
6735 1 1 1 1 1 1 1 0 7 1.94
6784 1 1 1 1 1 1 1 0 7 1.94
6827 1 1 1 1 1 1 1 0 7 1.94
7163 1 1 1 1 1 1 1 0 7 1.94
7766 1 1 1 1 1 1 1 0 7 1.94
7790 1 1 1 1 1 1 1 0 7 1.94
7927 1 1 1 1 1 1 1 0 7 1.94
7962 1 1 1 1 1 1 1 0 7 1.94
7975 1 1 1 1 1 1 1 0 7 1.94
7984 1 1 1 1 1 1 1 0 7 1.94
7992 1 1 1 1 1 1 1 0 7 1.94
8002 1 1 1 1 1 1 1 0 7 1.94
8106 1 1 1 1 1 1 1 0 7 1.94
8299 1 1 1 1 1 1 1 0 7 1.94
8362 1 1 1 1 1 1 1 0 7 1.94
8363 1 1 1 1 1 1 1 0 7 1.94
8365 1 1 1 1 1 1 1 0 7 1.94
8417 1 1 1 1 1 1 1 0 7 1.94
106 1 1 1 1 0 1 1 1 7 1.94
669 1 1 1 1 0 1 1 1 7 1.94
1018 1 1 1 1 0 1 1 1 7 1.94
1741 1 1 1 1 0 1 1 1 7 1.94
2099 1 1 1 1 0 1 1 1 7 1.94
2169 1 1 1 1 1 0 1 1 7 1.94
2176 1 1 1 1 1 0 1 1 7 1.94
2361 1 1 1 1 0 1 1 1 7 1.94
2527 1 1 1 1 1 0 1 1 7 1.94
2878 1 1 1 1 0 1 1 1 7 1.94
3021 1 1 1 1 0 1 1 1 7 1.94
3057 1 1 1 1 0 1 1 1 7 1.94
3082 1 1 1 1 1 0 1 1 7 1.94
3086 1 1 1 1 0 1 1 1 7 1.94
3118 1 1 1 1 0 1 1 1 7 1.94
3154 1 1 1 1 0 1 1 1 7 1.94
3170 1 1 1 1 0 1 1 1 7 1.94
3183 1 1 1 1 0 1 1 1 7 1.94
3206 1 1 1 1 0 1 1 1 7 1.94
3529 1 1 1 1 0 1 1 1 7 1.94
3547 1 1 1 1 0 1 1 1 7 1.94
4337 1 1 1 1 0 1 1 1 7 1.94
4408 1 1 1 1 0 1 1 1 7 1.94
4419 1 1 1 1 0 1 1 1 7 1.94
4626 1 1 1 1 0 1 1 1 7 1.94
4747 1 1 1 1 0 1 1 1 7 1.94
4935 1 1 1 1 0 1 1 1 7 1.94
5229 1 1 1 1 0 1 1 1 7 1.94
5230 1 1 1 1 0 1 1 1 7 1.94
5693 1 1 1 1 0 1 1 1 7 1.94
6218 1 1 1 1 1 0 1 1 7 1.94
6306 1 1 1 1 1 0 1 1 7 1.94
6319 1 1 1 1 1 0 1 1 7 1.94
6770 1 1 1 1 0 1 1 1 7 1.94
6771 1 1 1 1 1 0 1 1 7 1.94
6787 1 1 1 1 0 1 1 1 7 1.94
7021 1 1 1 1 0 1 1 1 7 1.94
7513 1 1 1 1 1 0 1 1 7 1.94
7588 1 1 1 1 0 1 1 1 7 1.94
7624 1 1 1 1 0 1 1 1 7 1.94
7633 1 1 1 1 0 1 1 1 7 1.94
7645 1 1 1 1 0 1 1 1 7 1.94
7650 1 1 1 1 0 1 1 1 7 1.94
7666 1 1 1 1 0 1 1 1 7 1.94
7675 1 1 1 1 0 1 1 1 7 1.94
97 1 0 1 1 1 1 1 1 7 1.94
150 1 0 1 1 1 1 1 1 7 1.94
512 1 0 1 1 1 1 1 1 7 1.94
1978 1 0 1 1 1 1 1 1 7 1.94
2341 1 0 1 1 1 1 1 1 7 1.94
3779 1 0 1 1 1 1 1 1 7 1.94
4398 1 0 1 1 1 1 1 1 7 1.94
4418 1 0 1 1 1 1 1 1 7 1.94
4704 1 0 1 1 1 1 1 1 7 1.94
4731 1 0 1 1 1 1 1 1 7 1.94
5809 1 0 1 1 1 1 1 1 7 1.94
6536 1 0 1 1 1 1 1 1 7 1.94
6629 1 0 1 1 1 1 1 1 7 1.94
6841 1 0 1 1 1 1 1 1 7 1.94
6842 1 0 1 1 1 1 1 1 7 1.94
6844 1 0 1 1 1 1 1 1 7 1.94
7167 1 0 1 1 1 1 1 1 7 1.94
8098 1 0 1 1 1 1 1 1 7 1.94