A rural subsample of 8445 w1 omen from the Bangladesh Fertility Survey of 1989 (Huqand Cleland, 1990).
The dimension of interest is women’s mobility and social freedom.
Described in: Bartholomew, D., Steel, F., Moustaki, I. and Galbraith, J. (2002) The Analysis and Interpretation of Multivariate Data for Social Scientists. London: Chapman and Hall.
Data is available within R software package “ltm”
library(ltm)
## Loading required package: MASS
## Loading required package: msm
## Loading required package: polycor
head(Mobility)
## Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8
## 1 1 1 1 1 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
my1pl<-rasch(Mobility)
summary(my1pl)
##
## Call:
## rasch(data = Mobility)
##
## Model Summary:
## log.Lik AIC BIC
## -23416.48 46850.96 46914.33
##
## Coefficients:
## value std.err z.vals
## Dffclt.Item 1 -1.0101 0.0201 -50.1740
## Dffclt.Item 2 0.5562 0.0177 31.4822
## Dffclt.Item 3 -0.8258 0.0188 -43.8296
## Dffclt.Item 4 0.3877 0.0170 22.7803
## Dffclt.Item 5 1.8517 0.0300 61.8094
## Dffclt.Item 6 1.4935 0.0253 58.9716
## Dffclt.Item 7 2.0434 0.0330 61.9871
## Dffclt.Item 8 1.6861 0.0277 60.9246
## Dscrmn 2.4985 0.0353 70.7925
##
## Integration:
## method: Gauss-Hermite
## quadrature points: 21
##
## Optimization:
## Convergence: 0
## max(|grad|): 0.09
## quasi-Newton: BFGS
#Now plot ICC and IIC for 1pl model.
plot(my1pl, type = "ICC")
plot(my1pl, type = "IIC", items=0)
my2pl <- ltm(Mobility ~ z1)
summary(my2pl)
##
## Call:
## ltm(formula = Mobility ~ z1)
##
## Model Summary:
## log.Lik AIC BIC
## -23141.71 46315.43 46428.09
##
## Coefficients:
## value std.err z.vals
## Dffclt.Item 1 -1.0836 0.0280 -38.7067
## Dffclt.Item 2 0.6314 0.0206 30.6227
## Dffclt.Item 3 -1.0249 0.0313 -32.7756
## Dffclt.Item 4 0.4003 0.0168 23.8700
## Dffclt.Item 5 1.6302 0.0290 56.3001
## Dffclt.Item 6 1.4018 0.0260 53.8161
## Dffclt.Item 7 1.6988 0.0323 52.6558
## Dffclt.Item 8 1.5846 0.0298 53.1201
## Dscrmn.Item 1 2.1087 0.0915 23.0466
## Dscrmn.Item 2 2.0580 0.0675 30.4949
## Dscrmn.Item 3 1.5086 0.0573 26.3384
## Dscrmn.Item 4 3.0100 0.1245 24.1866
## Dscrmn.Item 5 3.9761 0.2116 18.7936
## Dscrmn.Item 6 3.1384 0.1294 24.2557
## Dscrmn.Item 7 5.8162 0.4526 12.8517
## Dscrmn.Item 8 3.0220 0.1273 23.7312
##
## Integration:
## method: Gauss-Hermite
## quadrature points: 21
##
## Optimization:
## Convergence: 0
## max(|grad|): 0.17
## quasi-Newton: BFGS
#Now plot ICC and IIC for 2pl model.
plot(my2pl, type = "ICC")
plot(my2pl, type = "IIC", items=0)
my3pl <- tpm(Mobility)
summary(my3pl)
##
## Call:
## tpm(data = Mobility)
##
## Model Summary:
## log.Lik AIC BIC
## -23079.63 46207.26 46376.25
##
## Coefficients:
## value std.err z.vals
## Gussng.Item 1 0.0003 0.0046 0.0738
## Gussng.Item 2 0.0000 0.0000 0.0011
## Gussng.Item 3 0.1703 0.0769 2.2148
## Gussng.Item 4 0.0144 0.0073 1.9735
## Gussng.Item 5 0.0010 0.0006 1.5186
## Gussng.Item 6 0.0109 0.0026 4.2529
## Gussng.Item 7 0.0000 NaN NaN
## Gussng.Item 8 0.0098 0.0016 6.2617
## Dffclt.Item 1 -1.0535 0.0287 -36.7111
## Dffclt.Item 2 0.6417 0.0207 30.9792
## Dffclt.Item 3 -0.7342 0.1390 -5.2831
## Dffclt.Item 4 0.4311 0.0203 21.2520
## Dffclt.Item 5 1.6204 0.0274 59.2193
## Dffclt.Item 6 1.4032 0.0227 61.7952
## Dffclt.Item 7 1.7004 0.0301 56.5572
## Dffclt.Item 8 1.5396 0.0264 58.3250
## Dscrmn.Item 1 2.2874 0.1207 18.9563
## Dscrmn.Item 2 2.0446 0.0663 30.8468
## Dscrmn.Item 3 1.7552 0.1461 12.0163
## Dscrmn.Item 4 3.2317 0.1865 17.3307
## Dscrmn.Item 5 4.3157 0.2605 16.5653
## Dscrmn.Item 6 4.0670 0.3265 12.4575
## Dscrmn.Item 7 5.6933 0.3913 14.5495
## Dscrmn.Item 8 4.4889 0.3208 13.9927
##
## Integration:
## method: Gauss-Hermite
## quadrature points: 21
##
## Optimization:
## Optimizer: optim (BFGS)
## Convergence: 0
## max(|grad|): 0.16
#Now plot ICC and IIC for 3pl model.
plot(my3pl, type = "ICC")
plot(my3pl, type = "IIC", items=0)
anova(my1pl, my2pl)
##
## Likelihood Ratio Table
## AIC BIC log.Lik LRT df p.value
## my1pl 46850.96 46914.33 -23416.48
## my2pl 46315.43 46428.09 -23141.71 549.53 7 <0.001
#(the smaller the better!)
anova(my2pl, my3pl)
##
## Likelihood Ratio Table
## AIC BIC log.Lik LRT df p.value
## my2pl 46315.43 46428.09 -23141.71
## my3pl 46207.26 46376.25 -23079.63 124.17 8 <0.001
3PL the smaller and better model
resp<-matrix(c(1,1,1,1,0,1,0,1), nrow=1)
factor.scores(my2pl, method="EAP", resp.patterns=resp)
##
## Call:
## ltm(formula = Mobility ~ z1)
##
## Scoring Method: Expected A Posteriori
##
## Factor-Scores for specified response patterns:
## Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8 Obs Exp
## Exp 1 1 1 1 0 1 0 1 43 77.367
## z1 se.z1
## Exp 1.361 0.204
#EXPLAIN: “$” addressing
#theta = dataCAT$score.dat$z1
#sem = dataCAT$score.dat$se.z1
mobIRT <- factor.scores(my3pl, resp.patterns=Mobility, method="EAP")
#Compare IRT and CTT scores
CTT_scores <- rowSums(Mobility)
IRT_scores <- mobIRT$score.dat$z1
plot(IRT_scores, CTT_scores)
#Plot the standard error and scores
IRT_errors <- mobIRT$score.dat$se.z1
plot(IRT_scores, IRT_errors, type="p")
IRT.score.3pl<- factor.scores(my3pl, resp.patterns=Mobility, method="EAP")
theta3.pl<- IRT.score.3pl$score.dat$z1
Mobility$score <- rowSums(Mobility[,1:8])
mydf <- data.frame(Mobility, theta = theta3.pl)
mydf1<- mydf[order(mydf$score,mydf$theta),]
options(digits = 3)
knitr::kable(subset(mydf1, subset = mydf1$score == 7),
caption = 'There are several different patterns all with a score of 7')
Item.1 | Item.2 | Item.3 | Item.4 | Item.5 | Item.6 | Item.7 | Item.8 | score | theta | |
---|---|---|---|---|---|---|---|---|---|---|
91 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
145 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
477 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
482 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
645 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
676 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
980 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
1346 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
2119 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
2130 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
2195 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
2246 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
2292 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
2345 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
2613 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
2618 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
2625 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
2656 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
2754 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
2916 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
2953 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
3011 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
3043 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
3211 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
3400 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
3538 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
3770 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
3935 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
5078 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
5149 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
5151 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
5173 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
5418 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
5828 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
5902 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
6302 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
6336 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
6340 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
6346 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
6456 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
6516 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
6664 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
6797 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
7051 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
7159 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
7205 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
7591 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
7602 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
7954 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
8001 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
8087 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
8330 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.72 |
448 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
2719 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
2731 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
2928 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
3544 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
4543 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
5076 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
5077 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
5596 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
6492 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
6735 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
6784 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
6827 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
7163 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
7766 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
7790 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
7927 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
7962 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
7975 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
7984 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
7992 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
8002 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
8106 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
8299 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
8362 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
8363 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
8365 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
8417 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.86 |
106 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
669 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
1018 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
1741 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
2099 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
2361 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
2878 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
3021 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
3057 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
3086 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
3118 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
3154 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
3170 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
3183 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
3206 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
3529 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
3547 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
4337 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
4408 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
4419 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
4626 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
4747 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
4935 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
5229 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
5230 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
5693 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
6770 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
6787 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
7021 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
7588 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
7624 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
7633 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
7645 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
7650 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
7666 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
7675 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.88 |
2169 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 7 | 1.90 |
2176 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 7 | 1.90 |
2527 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 7 | 1.90 |
3082 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 7 | 1.90 |
6218 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 7 | 1.90 |
6306 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 7 | 1.90 |
6319 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 7 | 1.90 |
6771 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 7 | 1.90 |
7513 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 7 | 1.90 |
97 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 2.05 |
150 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 2.05 |
512 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 2.05 |
1978 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 2.05 |
2341 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 2.05 |
3779 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 2.05 |
4398 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 2.05 |
4418 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 2.05 |
4704 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 2.05 |
4731 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 2.05 |
5809 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 2.05 |
6536 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 2.05 |
6629 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 2.05 |
6841 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 2.05 |
6842 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 2.05 |
6844 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 2.05 |
7167 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 2.05 |
8098 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 2.05 |
data<-Mobility[,1:8]
IRT.score.1pl<- factor.scores(my1pl, resp.patterns=data, method="EAP")
theta1.pl<- IRT.score.1pl$score.dat$z1
Mobility$score <- rowSums(Mobility[,1:8])
mydf <- data.frame(Mobility, theta = theta1.pl)
mydf2<- mydf[order(mydf$score,mydf$theta),]
options(digits = 3)
knitr::kable(subset(mydf2, subset = mydf2$score == 7),
caption = 'There are several different patterns all with a score of 7')
Item.1 | Item.2 | Item.3 | Item.4 | Item.5 | Item.6 | Item.7 | Item.8 | score | theta | |
---|---|---|---|---|---|---|---|---|---|---|
91 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
145 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
477 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
482 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
645 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
676 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
980 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
1346 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
2119 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
2130 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
2195 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
2246 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
2292 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
2345 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
2613 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
2618 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
2625 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
2656 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
2754 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
2916 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
2953 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
3011 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
3043 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
3211 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
3400 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
3538 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
3770 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
3935 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
5078 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
5149 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
5151 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
5173 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
5418 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
5828 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
5902 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
6302 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
6336 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
6340 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
6346 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
6456 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
6516 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
6664 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
6797 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
7051 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
7159 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
7205 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
7591 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
7602 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
7954 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
8001 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
8087 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
8330 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | 1.94 |
448 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
2719 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
2731 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
2928 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
3544 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
4543 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
5076 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
5077 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
5596 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
6492 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
6735 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
6784 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
6827 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
7163 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
7766 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
7790 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
7927 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
7962 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
7975 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
7984 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
7992 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
8002 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
8106 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
8299 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
8362 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
8363 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
8365 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
8417 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | 1.94 |
106 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
669 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
1018 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
1741 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
2099 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
2169 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 7 | 1.94 |
2176 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 7 | 1.94 |
2361 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
2527 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 7 | 1.94 |
2878 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
3021 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
3057 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
3082 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 7 | 1.94 |
3086 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
3118 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
3154 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
3170 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
3183 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
3206 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
3529 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
3547 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
4337 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
4408 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
4419 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
4626 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
4747 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
4935 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
5229 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
5230 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
5693 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
6218 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 7 | 1.94 |
6306 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 7 | 1.94 |
6319 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 7 | 1.94 |
6770 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
6771 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 7 | 1.94 |
6787 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
7021 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
7513 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 7 | 1.94 |
7588 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
7624 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
7633 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
7645 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
7650 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
7666 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
7675 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | 1.94 |
97 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 1.94 |
150 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 1.94 |
512 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 1.94 |
1978 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 1.94 |
2341 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 1.94 |
3779 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 1.94 |
4398 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 1.94 |
4418 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 1.94 |
4704 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 1.94 |
4731 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 1.94 |
5809 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 1.94 |
6536 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 1.94 |
6629 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 1.94 |
6841 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 1.94 |
6842 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 1.94 |
6844 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 1.94 |
7167 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 1.94 |
8098 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 1.94 |