Potencial Hidrico

se cargan los datos

library(readxl)
p <- read_excel("C:/Users/Javi3/Downloads/p.xlsx")
str(p)
## Classes 'tbl_df', 'tbl' and 'data.frame':    57 obs. of  8 variables:
##  $ repeticion : num  1 1 1 2 2 2 2 3 3 3 ...
##  $ planta     : num  9 10 11 9 10 11 12 9 10 11 ...
##  $ tratamiento: num  1 1 1 1 1 1 1 1 1 1 ...
##  $ c          : num  NA NA NA 40.5 48 ...
##  $ f          : num  0.734 0.777 0.719 NA NA ...
##  $ pn         : num  -0.91 -1.32 -2.68 -1.43 -1.55 -1.53 NA 0.11 -1.64 -0.78 ...
##  $ potencial  : num  NA NA NA 1.8 1.8 1.8 1.8 1.9 1.9 1.9 ...
##  $ e          : num  1.05 0.98 1.17 0.46 0.46 0.45 NA 0.88 0.72 0.66 ...
p$repeticion <- as.factor(p$repeticion)
p$tratamiento <- as.factor(p$tratamiento)

Supuestos

para verificar los supuestos es igual que antes, pero en este caso se prueban tres tratamientos no dos, el proseso es obtigosos, por eso no lo voy a realizar, crean que para e, se cumple la normalidad y la hocedasticidad, y para potencial y pn no

Modelo

El modelo que he utilizado es uno lineal mixto

library(lme4)
## Loading required package: Matrix
m1l <- lmer(potencial ~ tratamiento + (1|repeticion), REML = FALSE, p)
m1p <- lmer(pn ~ tratamiento + (1|repeticion), REML = FALSE, p)
m1e <- lmer(e ~ tratamiento + (1|repeticion), REML = FALSE, p)

plot(m1l)

qqnorm(resid(m1l))
qqline(resid(m1l))

plot(m1p)

qqnorm(resid(m1p))
qqline(resid(m1p))

plot(m1e)

qqnorm(resid(m1e))
qqline(resid(m1e))

Se realiza un anova a los modelos elegidos para analizar los estadisticos si se encuentran diferencias

anova(m1l) 
## Analysis of Variance Table
##             Df Sum Sq Mean Sq F value
## tratamiento  2     13  6.5001  12.942
anova(m1e)
## Analysis of Variance Table
##             Df  Sum Sq Mean Sq F value
## tratamiento  2 0.23592 0.11796  3.5244
anova(m1p)
## Analysis of Variance Table
##             Df Sum Sq Mean Sq F value
## tratamiento  2 81.254  40.627  1.8048
#para que tengan una idea del valor p de los estadisticos 

library(sjPlot)
## Warning in checkMatrixPackageVersion(): Package version inconsistency detected.
## TMB was built with Matrix version 1.2.11
## Current Matrix version is 1.2.8
## Please re-install 'TMB' from source or restore original 'Matrix' package
sjt.lmer(m1l)
## Computing p-values via Kenward-Roger approximation. Use `p.kr = FALSE` if computation takes too long.
    potencial
    B CI p
Fixed Parts
(Intercept)   3.06 2.20 – 3.91 <.001
tratamiento (0.5)   -1.23 -1.72 – -0.74 <.001
tratamiento (1)   -0.91 -1.40 – -0.41 .004
Random Parts
σ2   0.502
τ00, repeticion   0.638
Nrepeticion   4
ICCrepeticion   0.559
Observations   48
R2 / Ω02   .673 / .672
sjt.lmer(m1p)
## Computing p-values via Kenward-Roger approximation. Use `p.kr = FALSE` if computation takes too long.
    pn
    B CI p
Fixed Parts
(Intercept)   -2.50 -4.91 – -0.10 .047
tratamiento (0.5)   1.05 -2.35 – 4.44 .549
tratamiento (1)   3.23 -0.17 – 6.62 .069
Random Parts
σ2   22.510
τ00, repeticion   0.000
Nrepeticion   5
ICCrepeticion   0.000
Observations   45
R2 / Ω02   .074 / .074
sjt.lmer(m1e)
## Computing p-values via Kenward-Roger approximation. Use `p.kr = FALSE` if computation takes too long.
    e
    B CI p
Fixed Parts
(Intercept)   0.75 0.50 – 1.00 <.001
tratamiento (0.5)   -0.09 -0.22 – 0.04 .203
tratamiento (1)   -0.18 -0.31 – -0.05 .025
Random Parts
σ2   0.033
τ00, repeticion   0.070
Nrepeticion   5
ICCrepeticion   0.675
Observations   45
R2 / Ω02   .725 / .724

Se hacen los intervalos de confianza para ver si el cero esta entre el intervalo

Intervalos de confianza

library(lmerTest)
## 
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
## 
##     lmer
## The following object is masked from 'package:stats':
## 
##     step
confint.merMod(m1l) #potencial
## Computing profile confidence intervals ...
##                     2.5 %     97.5 %
## .sig01          0.4211558  2.0109352
## .sigma          0.5829481  0.8871307
## (Intercept)     1.9835274  4.1264739
## tratamiento0.5 -1.7320141 -0.7279859
## tratamiento1   -1.4070141 -0.4029859
confint.merMod(m1p) #pn
## Computing profile confidence intervals ...
##                     2.5 %     97.5 %
## .sig01          0.0000000  2.6543999
## .sigma          3.9106076  5.9230448
## (Intercept)    -4.9575110 -0.0511557
## tratamiento0.5 -2.4236504  4.5149837
## tratamiento1   -0.2436504  6.6949837
confint.merMod(m1e) #e
## Computing profile confidence intervals ...
##                     2.5 %      97.5 %
## .sig01          0.1497840  0.58684042
## .sigma          0.1491531  0.23173059
## (Intercept)     0.4559989  1.05200111
## tratamiento0.5 -0.2254722  0.04280556
## tratamiento1   -0.3114722 -0.04319444

Comparacion Multiple

library(multcomp)
## Loading required package: mvtnorm
## Loading required package: survival
## Loading required package: TH.data
## Loading required package: MASS
## 
## Attaching package: 'TH.data'
## The following object is masked from 'package:MASS':
## 
##     geyser
comparacion <-glht(m1l, linfct=mcp(tratamiento ="Tukey"))
comparacionp <-glht(m1p, linfct=mcp(tratamiento ="Tukey"))
comparacione <-glht(m1e, linfct=mcp(tratamiento ="Tukey"))

summary(comparacion)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = potencial ~ tratamiento + (1 | repeticion), data = p, 
##     REML = FALSE)
## 
## Linear Hypotheses:
##                 Estimate Std. Error z value Pr(>|z|)    
## 0.5 - 0.01 == 0  -1.2300     0.2506  -4.909   <0.001 ***
## 1 - 0.01 == 0    -0.9050     0.2506  -3.612   <0.001 ***
## 1 - 0.5 == 0      0.3250     0.2506   1.297    0.397    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
summary(comparacionp)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = pn ~ tratamiento + (1 | repeticion), data = p, 
##     REML = FALSE)
## 
## Linear Hypotheses:
##                 Estimate Std. Error z value Pr(>|z|)
## 0.5 - 0.01 == 0    1.046      1.732   0.604    0.818
## 1 - 0.01 == 0      3.226      1.732   1.862    0.150
## 1 - 0.5 == 0       2.180      1.732   1.258    0.419
## (Adjusted p values reported -- single-step method)
summary(comparacione)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = e ~ tratamiento + (1 | repeticion), data = p, 
##     REML = FALSE)
## 
## Linear Hypotheses:
##                 Estimate Std. Error z value Pr(>|z|)  
## 0.5 - 0.01 == 0 -0.09133    0.06680  -1.367   0.3583  
## 1 - 0.01 == 0   -0.17733    0.06680  -2.655   0.0216 *
## 1 - 0.5 == 0    -0.08600    0.06680  -1.287   0.4023  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

```