From the axioms of probability, we know that the probability of the entire sample space is 1. hence,
with: Pr(X = 1) = c \(k^2\) = c\(1^2\) = c
Pr(X = 2) = c \(k^2\) = c\(2^2\) = 4c
Pr(X = 3) = c \(k^2\) = c\(3^2\) = 9c
Therefore: \[ \begin{aligned} Pr(X = 1) + Pr(X = 2)+ Pr(X = 3) = & 1 \\ c + 4*c + 9*c = & 1 \\ 14*c = & 1 \\ c = & 1/14 \\ \end{aligned} \]
\[ \begin{aligned} Pr(X \le 2) = & Pr(X = 1) + Pr(X = 2) \\ Pr(X \le 2) = & c1^2 + c2^2 \\ Pr(X \le 2) = & (1/14) * 1 + (1/14) * 4 \\ \end{aligned} \]
Hence, Pr(X \(\le\) 2) = 0.3571429
E(X) = \(\sum_{i=1}^3 x_i\) * Pr(X=\(x_i\)) E(X) = 1(1(1/14)) + 2(4(1/14)) + 3(9(1/14))
Hence, the expected value E(X) = 2.5714286
Var(X) = \(E[X^2]-(E[X])^2\) = 1^2 * (1/14) + 2^2 * (4/14) + 3^2 * (9/14) - (2.5714)^2
Hence the Var(X) = 0.387902
hence, \(\frac 1 3 [8c - c] = 1\) \([8c - c] = 3\) \(7c = 3\) Therefore, \(c= \frac 3 7\)
Find Pr(X \(\ge\) 1) Since f(x) is a c.d.f. defined in the space \(1 \le x \le 2\). then Pr(X \(\ge\) 1) = \(\int_{1}^{2} f(x) dx= 1\)
Find E[X] E[X] = \(\int_{1}^{2} xcx^2 dx\) E[X] = \(\int_{1}^{2} \frac 3 7 x^3 dx\) E[X] = \(\left[ \frac 3 {28} x^4 \right]_{1}^{2}\) E[X] = \(\frac 3 {28} 2^4 - \frac 3 {28} 1^4\) E[X] = \(\frac 3 {28} (16 - 1)\) E[X] = \(\frac 3 {28} (15)\) Hence, E(X) = 1.6071429
Find Var(X)
Var(X) = \(E((X- \mu)^2)\)
we are going to use the Variance theorem: Var(X) = \(E(X^2) - E(X)^2 = E(X^2)- \mu^2\). hence, Var(X) = \(E(X^2) - \mu^2\) Var(X) = \(\int_{1}^{2} (cx^2)^2 dx - \mu^2\) Var(X) = \(\int_{1}^{2} \frac 9 {245} (x^2)^2 dx - \mu^2\) Var(X) = \(\int_{1}^{2} \frac 9 {245} x^4 dx - \mu^2\) Var(X) = \(\left[ \frac 9 {245} x^5 \right]_{1}^{2} - \mu^2\) Var(X) = \((\frac 9 {245} 2^5 - \frac 9 {245} 1^5) - \mu^2\) we have \(\mu\) = 1.6071429
Hence Var(X) = \((\frac 9 {245} 2^5 - \frac 9 {245} 1^5) - (1.6071429 )^2\) Var(X) = \((\frac 9 {245} (32 - 1)) - (1.6071429 )^2\) Var(X) = \((\frac 9 {245} (31)) - (1.6071429 )^2\)
Therefore,
Var(X) = -1.4441327
Suppose that X and Y are jointly continuous random variables with
\[ f(x,y) = \begin{cases} y - x, & \text{for 0 < x< 1 and 1< y < 2} \\ 0, & \text{otherwise} \end{cases} \]
\[ f_X (x) = \int_1^2 f_{XY} (x,y) dy \] \[ f_X (x) = \int_1^2 (y-x) dy \] \[ f_X (x) = \left[ \frac {y^2} 2- xy\right]_{1}^{2} \] \[ f_X (x) = (\frac 4 2 - 2x ) - (\frac 1 2 - x) \] \[ f_X (x) = 2 - 2x - \frac 1 2 + x \] \[ f_X (x) = \frac 3 2 - x \]
now we will compute \(f_y (y)\)
\[ f_Y (y) = \int_0^1 f_{XY} (x,y) dx \] \[ f_Y (y) = \int_0^1 (y-x) dx \] \[ f_Y (y) = \left[ xy - \frac {x^2} 2 \right]_{0}^{1} \] \[ f_Y (y) = (y - \frac 1 2) - 0\] \[ f_Y (y) = y - \frac 1 2 \]
Plotting f(x) and f(y)
We say X and Y are independent iif \(f(x,y) = f(x) f(y)\) We know that \(f(x,y) = y - x\). recall \(f_X (x) = \frac 3 2 - x\) and \(f_Y (y) = y - \frac 1 2\) Now let’s find out \(f(x) f(y)\) \(f(x) f(y) = (\frac 3 2 - x)(y - \frac 1 2)\) \(f(x) f(y) = y \frac 3 2 - \frac 3 4 - xy + \frac x 2\)
hence X and Y are Not independent as f(x) f(y) is not equal to \(f(x,y) =y - x\)
To find the joint CDF, we need to integrate the joint PDF.
recall our PDF’s are: \(f_X (x) = \frac 3 2 - x\) and \(f_Y (y) = y - \frac 1 2\) first, let’s find \(F_x (x)\) \[ F_x (x) = \int_{-\infty}^x f_x (u) du \] \[ F_x (x) = \frac{3}{2} x - \frac{1}{2} x^2 \] then, \(F_y (y)\) \[ F_y (y) = \int_{-\infty}^y f_y (u) du \] \[ F_y (y) = \frac{1}{2} y^2 - \frac{1}{2} y \]
\[ E[X] = \int_0^1 x f_x (x) dx \] \[ E[X] = \int_0^1 x (\frac 3 2 - x) dx \] \[ E[X] = \int_0^1 \frac{3}{2} x - x^2 \] \[ E[X] = \left[ \frac{3}{4} x^2 - \frac{1}{3} x^3 \right]_{0}^{1}\] \[ E[X] = \frac 3 4 1^2 - \frac 1 3 1^3 - 0 \] \[ E[X] = \frac 3 4 - \frac 1 3 \]
EX<- (3/4) - (1/3)
EXX<- EX^2
hence E(X) = 0.4166667
Var(X) \[ Var(X) = \int_0^1 x^2 f(x) dx - \mu^2\] \[ Var(X) = \int_0^1 x^2 (\frac{3}{2} - x) - \mu^2\] \[ Var(X) = \int_0^1 \frac{3}{2} x^2 - x^3 - \mu^2 \] \[ Var(X) = \left[ \frac{1}{2} x^3 - \frac{1}{4} x^4 \right]_{0}^{1} - \mu^2\] \[ Var(X) = \frac{1}{2} 1^3 - \frac{1}{4} 1^4 - 0 - \mu^2\] \[ Var(X) = \frac{1}{2} - \frac{1}{4} - 0.1736111\]
VarX<- (1/2) - (1/4) - EXX
hence Var(X) = 0.0763889
\[ E[Y] = \int_1^2 y f_y (y) dy \] \[ E[Y] = \int_1^2 y (y - \frac 1 2) dy \] \[ E[Y] = \int_1^2 (y^2 - \frac 1 2 y ) dy\] \[ E[Y] = \left[ \frac 1 3 y^3 - \frac 1 4 y^2 \right]_{1}^{2}\] \[ E[Y] = [ (\frac 1 3 2^3 - \frac 1 4 2^2) - (\frac 1 3 1^3 - \frac 1 4 1^2) \] \[ E[Y] = [ (\frac 8 3 - 1 ) - (\frac 1 3 - \frac 1 4 ) \]
EY<- ((8/3) - 1) - ( 1/3 - 1/4)
EYY<- EY^2
hence E(Y) = 1.5833333
\[ Var(Y) = \int_0^1 y^2 f(y) dy - \mu^2\] \[ Var(Y) = \int_0^1 y^2 (y-\frac{1}{2}) dy - \mu^2\] \[ Var(Y) = \int_0^1 (y^3 - \frac{1}{2} y^2) dy - \mu^2\] \[ Var(Y) = \left[ \frac{1}{4} y^4 - \frac{1}{6} y^3\right]_{1}^{2} - \mu^2 \] \[ Var(Y) = (\frac{1}{4} 2^4 - \frac{1}{6} 2^3) - (\frac{1}{4} - \frac{1}{6}) - \mu^2 \] \[ Var(Y) = (4 - \frac{4}{3} ) - (\frac{1}{4} - \frac{1}{6}) - 2.5069444 \]
VarY<- 4 - (4/3) - (1/4 - 1/6) - EYY
hence Var(Y) = 0.0763889
\[ Cov(X,Y) = E[XY] - E[X]E[Y] \]
\[ E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf_{xy}(x,y) dx dy \] \[ E[XY] = \int_{1}^{2} \int_{0}^{1} xy(y-x) dx dy = \int_{1}^{2} \int_{0}^{1} xy^2 - x^2 y dx dy \] \[ E[XY] = \int_1^2 \frac{x^2 y^2}{2} - \frac{x^3 y}{3} \vert_0^1 dy\] \[ E[XY] = \int_1^2 \frac{y^2}{2} - \frac{y}{3} dy = \frac{y^3}{6} - \frac{y^2}{6} \vert_1^2 = \frac{2}{3} \]
Next we compute E[X]E[Y]
\[ E[X]E[Y] = \int_{1}^{2} (\frac 3 2 - x) \int_{0}^{1} (y - \frac 1 2) \] \[ E[X]E[Y] = (\left[ \frac {3x} {2} - \frac {-x^2} 2\right]_{1}^{2}) ( \left[ \frac {y^2} 2 - \frac {1y} 2 \right]_{0}^{1}) \] \[ E[X]E[Y] = (\frac {6} {2} - \frac {4} 2 - \frac {3} {2} - \frac {1} 2) ( \frac {1} 2 - \frac {1} 2) \] \[ E[X]E[Y] = (\frac {6} {2} - \frac {4} 2 - \frac {3} {2} - \frac {1} 2) (0) \] \[ E[X]E[Y] = 0 \]
Therefore, \[Cov(X,Y) = E[XY] - E[X]E[Y] \] \[Cov(X,Y) = \frac{2}{3} - 0 \] \[Cov(X,Y) = \frac{2}{3} \]
Suppose that the following 10 observations come from the same distribution (not highly skewed) with unknown mean \(\mu\).
7.3, 6.1, 3.8, 8.4, 6.9, 7.1, 5.3, 8.2, 4.9, 5.8
Compute \(\bar{X}\), \(S^2\), and an approximate 95% confidence interval for \(\mu\)
Compute \(\bar{X}\)
X<- c(7.3, 6.1, 3.8, 8.4, 6.9, 7.1, 5.3, 8.2, 4.9, 5.8)
n<- length(X)
Xbar <- mean(X)
VarX<- var(X)
sdX<- sd(X)
ciw <- qt(0.95, n) * (sdX / sqrt(n))
Our mean or \(\bar{X}\) is: 6.38
Our Variance or \(S^2\) is: 2.1617778
To approximate 95% confidence interval for \(\mu\), we will use the following:
\(\bar{X} \pm Z_{\frac a 2} * \frac {\sigma} {\sqrt n}\). where \(\bar{X}\) represents the mean. \(\sigma\) = standard deviation. n sample size. \(a\) confidence level. \(Z_{\frac a 2}\) is confidence coefficient.
Hence: our confidence interval is 0.8427024. Therefore, \(\mu\) (6.38) should be between 5.5372976 and 7.2227024
A random variable X has the memoryless property if, for all s,t > 0,
\[ Pr(X > t+s | X > t) = Pr(X>s) \]
Show that the exponential distribution has the memoryless property.
Recall We say that X has an exponential distribution with parameter \(\lambda\) if its probability density function is:
\[ f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{x} \in Rx \\ 0, & \text{x} \notin Rx \end{cases} \] The parameter \(\lambda\) is called rate parameter.
\[Pr(X<t+s|X>t) = \frac {Pr(X< t+s and X>t)} {Pr(X>s)} \] \[Pr(X<t+s|X>t) = \frac {Pr( t < X < t+s)} {Pr(X>s)} \] \[Pr(X<t+s|X>t) = \frac {F(s+t) - F(s)} { 1 - F(x)} \] \[Pr(X<t+s|X>t) = \frac {1- e^{-\lambda (s+t)} - (1 - e^{-\lambda s})} {e^{-\lambda s}} \] \[Pr(X<t+s|X>t) = \frac {e^{-\lambda s} - e^{-\lambda (s+t)}} {e^{-\lambda s}} \] \[Pr(X<t+s|X>t) = \frac {e^{-\lambda s} - e^{-\lambda (s)} e^{-\lambda (t)} } {e^{-\lambda s}} \] \[Pr(X<t+s|X>t) = 1- e^{-\lambda (t)} \]
\[Pr(X<t+s|X>t) = P(X<s) \] using the complementary properties of probabilities we \[ Pr(X>t+s|X>t) = P(X>s) \]
Suppose \(X_1,X_2,.,X_n\) are i.i.d \(Exp(\lambda =1)\). Use the Central Limit Theorem to find the approximate value of \(Pr(100 \leq \Sigma^{100}_{i=1} X_i \leq 110\)
Recall We say that X has an exponential distribution with parameter \(\lambda\) if its probability density function is:
\[ f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{x} \in Rx \\ 0, & \text{x} \notin Rx \end{cases} \]
in our example, we have \(\lambda = 1\), hence exponential distribution becomes:
\[ f_X(x) = \begin{cases} e^{-x}, & \text{x} \in Rx \\ 0, & \text{x} \notin Rx \end{cases} \]
We have n=100 samples. hence using Central Limit Theorem, we get:
\[ = (Pr(100 \leq \Sigma^{100}_{i=1} X_i \leq 110) = \] \[ = Pr( \frac {100 - E(X)} {\sqrt(nVar(x))} \leq Z \leq \frac {110 - E(X)} {\sqrt(nVar(x))} ) \] \[ = Pr( \frac {100 - 100} {\sqrt(100)} \leq Z \leq \frac {110 - 100} {\sqrt(100)} ) \] \[ = Pr( 0 \leq Z \leq 1) \] \[ = \phi(1) - \phi(0) \] \[ = 0.3413447 \]
Hence, the approximate value of \(Pr(100 \leq \Sigma^{100}_{i=1} X_i \leq 110\) = 0.3413447
A random variable X that has a pmf given by \(p(x) = \frac{1}{n+1}\) over the range \(R_x = {0,1,2,...,n}\) is said to have a discrete uniform distribution.
hint: \(\sum_{i=1}^n i = \frac{n(n+1)} {2}\) and \(\sum_{i=1}^n i^2 = \frac{n(n+1)(2n +1)} {6}\)
\[mean = \frac {1} {n+1} \times \frac {(n+1)} {2} \]
\[mean = \frac{n}{2}\ \]
now we will find the variance:
We will use the below formula for the variance is:
\[Var(X) = E(X^2) - (E(X))^2\]
We already have \((E(X))^2\) which is \((\frac{n}{2})^2\)
Now we will need to compute \(E(X^2)\)
\[E(X^2) = \sum_{i=1}^n i^2\] from the hint, we have: \(\sum_{i=1}^n i^2 = \frac{n(n+1)(2n +1)} {6}\). hence, \[E(X^2) = \frac{1}{n+1} \frac{n(n+1)(2n +1)} {6}\]
Therefore,
\[Var(X) = E(X^2) - (E(X))^2\] \[Var(X) = \frac{1}{n+1} \frac{n(n+1)(2n +1)} {6} - (\frac{n}{2})^2\] \[Var(X) = \frac{n(2n +1)} {6} - (\frac{n}{2})^2\] \[Var(X) = \frac {2n(2n +1) - 3{n}^2} {12} \] \[Var(X) = \frac {4n^2 +2n - 3{n}^2} {12} \] \[Var(X) = \frac {n^2 +2n} {12} \] \[Var(X) = \frac {n(n +2)} {12} \]
\[ a+1+a+2+a+3+a...+a+n\] \[ a+a+a+a...a_n ..+.. 1+2+3+4...+n\] hence the sum in our new R_x is: \[ an+ \sum_{i=1}^n i\] \[ an+ \frac{n(n+1)} {2}\]
hence our mean is:
\[mean = \frac {1} {n+1} \times an \frac {(n+1)} {2} \] \[mean = \frac {an} {2} \]
Again, We will use the below formula for the variance is:
\[Var(X) = E(X^2) - (E(X))^2\] We already have \((E(X))^2\) which is \((\frac{an}{2})^2\)
Now we will need to compute \(E(X^2)\) using Algebra Identities, we have:
\[(a + b)^2 = a^2 + 2ab + b^2\] hence: \[(a + 1)^2 = a^2 + 2a + 1^2\] \[(a + 2)^2 = a^2 + 4a + 2^2\] \[(a + 3)^2 = a^2 + 6a + 3^2\] \[(a + 4)^2 = a^2 + 8a + 4^2\] \[...\] \[(a + n)^2 = a^2 + 2na + n^2\]
Which can be re-written as :
\[(a + 1)^2 = a^2 + 2a(1) + 1^2\] \[(a + 2)^2 = a^2 + 2a(2) + 2^2\] \[(a + 3)^2 = a^2 + 3a(3) + 3^2\] \[(a + 4)^2 = a^2 + 4a(4) + 4^2\] \[...\] \[(a + n)^2 = a^2 + 2a(n) + n^2\]
Hence the sum is \(X^2\) is: \[ n a^2 + 2a \sum_{i=1}^n i + \sum_{i=1}^n i^2 \] \[ n a^2 + 2a \frac{n(n+1)} {2} + \frac{n(n+1)(2n +1)} {6}\]
Now lets replace \(X^2\) in our Var(X) equation:
\[Var(X) = E(X^2) - (E(X))^2\] \[Var(X) = \frac{1}{n+1} (n a^2 + 2a \frac{n(n+1)} {2} + \frac{n(n+1)(2n +1)} {6}) - (\frac {an} {2})^2\] \[Var(X) = \frac{1}{n+1} (n a^2 + a {n(n+1)} + \frac{n(n+1)(2n +1)} {6}) - (\frac {an} {2})^2\] \[Var(X) = (\frac{n a^2}{n+1} + an + \frac{n(2n +1)} {6}) - (\frac {an} {2})^2\] \[Var(X) = \frac{n a^2}{n+1} + an - \frac {{an}^2} 4 + \frac{n(2n +1)} {6} \]
The lifetime, in years, of a satellite placed in orbit is given by the following pdf:
\[ f(x) = \begin{cases} 0.4e^{-0.4x}, & \text{x} \geq 0 \\ 0, & \text{otherwise} \end{cases} \]
\[Pr(X \ge 5) = \int_{5}^\infty 0.4e^{-0.4x} dx\] \[Pr(X \ge 5) = \int_{5}^\infty \frac {2e^{- \frac {2x} 5}} 5 dx\]
now let’s subtitute u = \(-\frac {2x} {5}\)
wich imply \(\frac {du} {dx} = -\frac 2 5\)
now lets plug in our u and du/dx, we get:
\[Pr(X \ge 5) = - \int_{5}^\infty \frac {2e^{u}} {5} \frac {-5} 2 du\] \[Pr(X \ge 5) = - \int_{5}^\infty e^{u} du\] \[Pr(X \ge 5) = - e^{u} \] we replace u with \(-\frac {2x} {5}\) , we get:
\[Pr(X \ge 5) = \left[ - e^{-\frac {2x} {5}} \right]_{5}^\infty\]
as years goe to infinity the \(e^{-\frac {2x} {5}}\) goes to 0. hence:
\[Pr(X \ge 5) = 0 - (- e^{-\frac {2x5} {5}} )\] \[Pr(X \ge 5) = e^{-2} \]
Hence, the probability that this satellite is still “alive” after 5 years is: 0.1353353
\[Pr( 3 \le X \le 6) = \int_{3}^{6} 0.4e^{-0.4x} dx\]
using the results from (a), we get:
\[Pr( 3 \le X \le 6) = \left[ - e^{-\frac {2x} {5}} \right]_{3}^{6}\] \[Pr( 3 \le X \le 6) = - e^{-\frac {12} {5}} - (- e^{-\frac {6} {5}}) \] \[Pr( 3 \le X \le 6) = - e^{-\frac {12} {5}} + e^{-\frac {6} {5}} \]
Hence, the probability that the satellite dies between 3 and 6 years from the time it is placed in orbit is: 0.2104763
Three shafts are made and assembled into a linkage. The length of each shaft, in centimeters, is distributed as follows:
Shaft 1: N(60,0.09) Shaft 2: N(40,0.05) Shaft 3: N(50,0.11)
the distribution of the length of the linkage is the sum all means and their respective standard deviation. hence, the distribution of the length of the linkage 60+40+50= 150 with standard deviation of sqrt(.09^2 + .05^2 + .11^2)= 0.1506652. Therefore distribution of the length of the linkage is: N(150, .15)
\[ Z = \frac{X - E[X]}{\sigma(X)} \] \[ z = \frac {150.2 - 150} {.15} \] \[ z = \frac {.2} {.15} \] hence z = 1.3333333
therefore, the probability that the linkage will be longer than 150.2 cm is 0.0912112
\[ z1 = \frac {149.83 - 150} {.15} \] \[ z1 = \frac {150.21 - 150} {.15} \]
z1= -1.1333333 z2= 1.4
Therefore, the proportion of assemblies are within the tolerance limits of: 0.7907062 or 79%