Bayes Theorem \[
p(A|B)=\frac {p(B|A)~p(A)} {p(B)}
\]
- Breast Cancer prevelance = .35%, \(p(\ddot\frown)=.0035\)
- What is the probability of not having breast cancer \(p(\ddot\smile) = 1 -.0035=.9965\)
- Mammogram false negative = 11%, \(p(-|\ddot\frown)=.11\)
- Mammogram false positive = 7%, \(p(+|\ddot\smile)=.07\)
Finding the true positive, getting a + mammogram conditional on having breast cancer. This is also called sensitivity of a test, how well a test can detect a disease. \[
p(+|\ddot\frown) = 1 - p(-|\ddot\frown) = 1 - .11=.89
\] This is because the true positive and false negative must = 1.00. Meaning that we can take the inverse of what we already know to be the false negative.
Finding the true negative, getting a - mammogram conditional on not having breast cancer. This is also called specificity of a test, how well a test can discriminate between not having the disease. \[
p(-|\ddot\smile) = 1 - p(-|\ddot\smile) = 1 - .07=.93
\]
We now have 6 pieces of information from our original 3 pieces. \(p(\ddot\frown)=.0035\) Probability of having cancer \(p(\ddot\smile) =.9965\) Probability of not having cancer \(p(+|\ddot\frown)=.89\) True positive \(p(-|\ddot\frown)=.11\) False negative \(p(-|\ddot\smile)=.93\) True Negative \(p(+|\ddot\smile)=.07\) False positive
We want to know what is the probability of having breast cancer conditional on getting a + mammogram. Question: \(p(\ddot\frown|+)=?\)
Using bayes theorem we plug in the numbers.
\[
p(\ddot\frown|+)=\frac {p(+|\ddot\frown)~p(\ddot\frown)} {p(+|\ddot\frown) \times p(\ddot\frown) + p(+|\ddot\smile) \times p(\ddot\smile)}
\]
\[
p(\ddot\frown|+)=\frac{.89\times .0035} {.89 \times .0035 + .07 \times .9965} = .0427
\] A 4% chance that a women over the age of 40 selected at random and tests positive on mammogram has breast cancer.
What if there is a second test? Rather than using the prevalence we now use the result from the first test. \(p(\ddot\frown)=.0427\) \(p(\ddot\smile)= 1 - .0427 = .9573\) \[
p(\ddot\frown|2nd +)=\frac{.89\times .0427} {.89 \times .0427 + .07 \times .9573} =.3619
\] There is a 36% chance that a women who tested positive twice on a mammogram has breast cancer.
Using a binomial distribution we can examine the probability of having 10 women with breast cancer from a sample of 1,000.
dbinom(10, size = 1000, prob=.0035)
[1] 0.002258614
What about at least 1 woman with breast cancer from a sample of 1,000?
dbinom(1, size = 1000, prob=.0035)
[1] 0.1054129
An 11% chance.
In a sample of 10,000, what is the cumulative probability of seeing at least 100 or less cases of breast cancer?
library(RcmdrMisc)
x <- 1:100
plotDistr(x, dbinom(x, size = 10000, prob=.0035), discrete=TRUE)

With this plot we can see that the seeing 33-38 cases of breast cancer has a probability of around .30, let’s check this hypothesis.
sum(dbinom(33:37, size=10000, prob=.0035))
[1] 0.3277125
The cumulative probability of seeing between 33 and 37 cases of breast cancer in a sample of 10,000 is .327, or a 32.8% chance.
LS0tCnRpdGxlOiAiRXhhbXBsZSBmb3IgdXBkYXRpbmcgcHJpb3IgZnJvbSBwb3N0ZXJpb3IiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUpCmBgYApCYXllcyBUaGVvcmVtCiQkCnAoQXxCKT1cZnJhYyB7cChCfEEpfnAoQSl9IHtwKEIpfQokJAoKMS4gQnJlYXN0IENhbmNlciBwcmV2ZWxhbmNlID0gLjM1JSwgJHAoXGRkb3RcZnJvd24pPS4wMDM1JAogICAgKyBXaGF0IGlzIHRoZSBwcm9iYWJpbGl0eSBvZiBub3QgaGF2aW5nIGJyZWFzdCBjYW5jZXIgJHAoXGRkb3Rcc21pbGUpID0gMSAtLjAwMzU9Ljk5NjUkCjIuIE1hbW1vZ3JhbSBmYWxzZSBuZWdhdGl2ZSA9IDExJSwgJHAoLXxcZGRvdFxmcm93bik9LjExJAozLiBNYW1tb2dyYW0gZmFsc2UgcG9zaXRpdmUgPSA3JSwgJHAoK3xcZGRvdFxzbWlsZSk9LjA3JAoKRmluZGluZyB0aGUgdHJ1ZSBwb3NpdGl2ZSwgZ2V0dGluZyBhICsgbWFtbW9ncmFtIGNvbmRpdGlvbmFsIG9uIGhhdmluZyBicmVhc3QgY2FuY2VyLiBUaGlzIGlzIGFsc28gY2FsbGVkIHNlbnNpdGl2aXR5IG9mIGEgdGVzdCwgaG93IHdlbGwgYSB0ZXN0IGNhbiBkZXRlY3QgYSBkaXNlYXNlLgokJApwKCt8XGRkb3RcZnJvd24pID0gMSAtIHAoLXxcZGRvdFxmcm93bikgPSAxIC0gLjExPS44OQokJApUaGlzIGlzIGJlY2F1c2UgdGhlIHRydWUgcG9zaXRpdmUgYW5kIGZhbHNlIG5lZ2F0aXZlIG11c3QgPSAxLjAwLiBNZWFuaW5nIHRoYXQgd2UgY2FuIHRha2UgdGhlIGludmVyc2Ugb2Ygd2hhdCB3ZSBhbHJlYWR5IGtub3cgdG8gYmUgdGhlIGZhbHNlIG5lZ2F0aXZlLgoKCkZpbmRpbmcgdGhlIHRydWUgbmVnYXRpdmUsIGdldHRpbmcgYSAtIG1hbW1vZ3JhbSBjb25kaXRpb25hbCBvbiBub3QgaGF2aW5nIGJyZWFzdCBjYW5jZXIuIFRoaXMgaXMgYWxzbyBjYWxsZWQgc3BlY2lmaWNpdHkgb2YgYSB0ZXN0LCBob3cgd2VsbCBhIHRlc3QgY2FuIGRpc2NyaW1pbmF0ZSBiZXR3ZWVuIG5vdCBoYXZpbmcgdGhlIGRpc2Vhc2UuCiQkCnAoLXxcZGRvdFxzbWlsZSkgPSAxIC0gcCgtfFxkZG90XHNtaWxlKSA9IDEgLSAuMDc9LjkzCiQkCgpXZSBub3cgaGF2ZSA2IHBpZWNlcyBvZiBpbmZvcm1hdGlvbiBmcm9tIG91ciBvcmlnaW5hbCAzIHBpZWNlcy4KJHAoXGRkb3RcZnJvd24pPS4wMDM1JCBQcm9iYWJpbGl0eSBvZiBoYXZpbmcgY2FuY2VyCiRwKFxkZG90XHNtaWxlKSA9Ljk5NjUkIFByb2JhYmlsaXR5IG9mIG5vdCBoYXZpbmcgY2FuY2VyCiRwKCt8XGRkb3RcZnJvd24pPS44OSQgVHJ1ZSBwb3NpdGl2ZQokcCgtfFxkZG90XGZyb3duKT0uMTEkIEZhbHNlIG5lZ2F0aXZlCiRwKC18XGRkb3Rcc21pbGUpPS45MyQgVHJ1ZSBOZWdhdGl2ZQokcCgrfFxkZG90XHNtaWxlKT0uMDckIEZhbHNlIHBvc2l0aXZlCgpXZSB3YW50IHRvIGtub3cgd2hhdCBpcyB0aGUgcHJvYmFiaWxpdHkgb2YgaGF2aW5nIGJyZWFzdCBjYW5jZXIgY29uZGl0aW9uYWwgb24gZ2V0dGluZyBhICsgbWFtbW9ncmFtLgpRdWVzdGlvbjogJHAoXGRkb3RcZnJvd258Kyk9PyQKClVzaW5nIGJheWVzIHRoZW9yZW0gd2UgcGx1ZyBpbiB0aGUgbnVtYmVycy4KCiQkCnAoXGRkb3RcZnJvd258Kyk9XGZyYWMge3AoK3xcZGRvdFxmcm93bil+cChcZGRvdFxmcm93bil9IHtwKCt8XGRkb3RcZnJvd24pIFx0aW1lcyBwKFxkZG90XGZyb3duKSArIHAoK3xcZGRvdFxzbWlsZSkgXHRpbWVzIHAoXGRkb3Rcc21pbGUpfQokJAoKCiQkCnAoXGRkb3RcZnJvd258Kyk9XGZyYWN7Ljg5XHRpbWVzIC4wMDM1fSB7Ljg5IFx0aW1lcyAuMDAzNSArIC4wNyBcdGltZXMgLjk5NjV9ID0gLjA0MjcKJCQKQSA0JSBjaGFuY2UgdGhhdCBhIHdvbWVuIG92ZXIgdGhlIGFnZSBvZiA0MCBzZWxlY3RlZCBhdCByYW5kb20gYW5kIHRlc3RzIHBvc2l0aXZlIG9uIG1hbW1vZ3JhbSBoYXMgYnJlYXN0IGNhbmNlci4gCgpXaGF0IGlmIHRoZXJlIGlzIGEgc2Vjb25kIHRlc3Q/ClJhdGhlciB0aGFuIHVzaW5nIHRoZSBwcmV2YWxlbmNlIHdlIG5vdyB1c2UgdGhlIHJlc3VsdCBmcm9tIHRoZSBmaXJzdCB0ZXN0LgokcChcZGRvdFxmcm93bik9LjA0MjckCiRwKFxkZG90XHNtaWxlKT0gMSAtIC4wNDI3ID0gLjk1NzMkCiQkCnAoXGRkb3RcZnJvd258Mm5kICspPVxmcmFjey44OVx0aW1lcyAuMDQyN30gey44OSBcdGltZXMgLjA0MjcgKyAuMDcgXHRpbWVzIC45NTczfSA9LjM2MTkgCiQkClRoZXJlIGlzIGEgMzYlIGNoYW5jZSB0aGF0IGEgd29tZW4gd2hvIHRlc3RlZCBwb3NpdGl2ZSB0d2ljZSBvbiBhIG1hbW1vZ3JhbSBoYXMgYnJlYXN0IGNhbmNlci4KClVzaW5nIGEgYmlub21pYWwgZGlzdHJpYnV0aW9uIHdlIGNhbiBleGFtaW5lIHRoZSBwcm9iYWJpbGl0eSBvZiBoYXZpbmcgMTAgd29tZW4gd2l0aCBicmVhc3QgY2FuY2VyIGZyb20gYSBzYW1wbGUgb2YgMSwwMDAuCmBgYHtyfQpkYmlub20oMTAsIHNpemUgPSAxMDAwLCBwcm9iPS4wMDM1KQpgYGAKV2hhdCBhYm91dCBhdCBsZWFzdCAxIHdvbWFuIHdpdGggYnJlYXN0IGNhbmNlciBmcm9tIGEgc2FtcGxlIG9mIDEsMDAwPwpgYGB7cn0KZGJpbm9tKDEsIHNpemUgPSAxMDAwLCBwcm9iPS4wMDM1KQpgYGAKQW4gMTElIGNoYW5jZS4KCkluIGEgc2FtcGxlIG9mIDEwLDAwMCwgd2hhdCBpcyB0aGUgY3VtdWxhdGl2ZSBwcm9iYWJpbGl0eSBvZiBzZWVpbmcgYXQgbGVhc3QgMTAwIG9yIGxlc3MgY2FzZXMgb2YgYnJlYXN0IGNhbmNlcj8KYGBge3J9CmxpYnJhcnkoUmNtZHJNaXNjKQp4IDwtIDE6MTAwCnBsb3REaXN0cih4LCBkYmlub20oeCwgc2l6ZSA9IDEwMDAwLCBwcm9iPS4wMDM1KSwgZGlzY3JldGU9VFJVRSkKYGBgCldpdGggdGhpcyBwbG90IHdlIGNhbiBzZWUgdGhhdCB0aGUgc2VlaW5nIDMzLTM4IGNhc2VzIG9mIGJyZWFzdCBjYW5jZXIgaGFzIGEgcHJvYmFiaWxpdHkgb2YgYXJvdW5kIC4zMCwgbGV0J3MgY2hlY2sgdGhpcyBoeXBvdGhlc2lzLgpgYGB7cn0Kc3VtKGRiaW5vbSgzMzozNywgc2l6ZT0xMDAwMCwgcHJvYj0uMDAzNSkpCmBgYAoKVGhlIGN1bXVsYXRpdmUgcHJvYmFiaWxpdHkgb2Ygc2VlaW5nIGJldHdlZW4gMzMgYW5kIDM3IGNhc2VzIG9mIGJyZWFzdCBjYW5jZXIgaW4gYSBzYW1wbGUgb2YgMTAsMDAwIGlzIC4zMjcsIG9yIGEgMzIuOCUgY2hhbmNlLiA=