\(\int 4e^{-7x}dx\)
\(u = -7x\)
\(du = -7dx\)
\(dx = \frac{du}{-7}\)
\(\int 4e^{u}\frac{du}{-7}\)
\(\frac{4}{-7}\int e^udu\)
\(\frac{4}{-7} e^u + C\)
\(\frac{4}{-7} e^{-7x} + C\)
Biologists are treating a pond contaminated with bacteria. The level of contamination is changing at a rate of \(\frac{dN}{dt} = - \frac{3150}{t^4}-220\) bacteria per cubic centimeter per day, where t is the number of days since treatment began. Find a function N( t ) to estimate the level of contamination if the level after 1 day was 6530 bacteria per cubic centimeter.
\(\frac{dN}{dt} = - \frac{3150}{t^4}-220\)
\(dN = ( - \frac{3150}{t^4}-220)dt\)
\(N = \int - \frac{3150}{t^4}-220dt\)
\(N = \int - \frac{3150}{t^4}dt-\int 220dt\)
\(N = - \frac{3150}{3t^3} - 220t + C\)
\(N(1) = - \frac{3150}{3(1)^3} - 220(1) + C = 6530\)
\(C = 7800\)
\(N(t) = - \frac{3150}{3(t)^3} - 220(t) + 7800\)
\(N(0) = - \frac{3150}{3(0)^3} - 220(0) + 7800 = 7800\)
\(\int_{4.5}^{8.5} 2x-9 dx\)
\(= [x^2 - 9x]|_{4.5}^{8.5}\)
\(= (8.5^2-9(8.5)) - (4.5^2-9(4.5))\)
\(= 16\)
Area of red rectangles is 16
\(y = x^2 -2x-2\), \(y =x+2\)
Graph for equation:
curve(x^2 -2*x-2, lwd = 2, xlim=c(-5, 5))
curve(x+2, lwd = 2, xlim=c(-5, 5), add = TRUE)
Intersection point: x^2 -2x-2 = x+2 x^2 -3x-4 = 0
f <- function(a){ a^2 - 3*a - 4 }
# zeros of f
root <- polyroot(c(-4, -3, 1))
ifelse(Im(root) == 0, Re(root), root)
## [1] -1+0i 4-0i
Area: \(\int_{-1}^{4}x+2 dx -\int_{-1}^{4}x^2 -2x-2 dx\)
\(=-[\frac{1}{3}x^3 - \frac{3}{2}x^2 -4x]|_{-1}^{4}\)
\(=20.8333\)
Number of orders per year = n lot size = s Cost = c
ns = 110 s = 110 / n
Assume half of inventory keep in stocks:
\(c = 8.25n + \frac{375}{2n}\)
\(c = 8.25n + \frac{206.25}{n}\)
\(c' = 8.25 - \frac{206.25}{n^{_{2}}}\)
\(c'=0\)
\(0 = 8.25 - \frac{206.25}{n^{_{2}}}\)
\(n = 5\)
Number of order per year is 5
Lot size is 22 and inventory cost is 78.75.
\(\int ln(9x)*x^6dx\)
Choose:
\(u=ln(9x)\), \(\frac{dv}{dx}=x^{6}\)
\(du = \frac{9}{9x}dx = \frac{1}{x}dx\)
\(dv = x^6dx\)
\(v = \frac{1}{7}x^7\)
In equation:
\(\int u dv= uv-\int v du\)
\(= ln(9x)\frac{1}{7}x^7 - \int\frac{1}{7}x^7\frac{1}{x}dx\)
\(==ln(9x)\frac{x^7}{7} - \frac{x^7}{49}-C\)
\(f(x) = \frac{1}{6x}\)
\(\int_{1}^{e^6} f(x)dx\)
\(=\int_{1}^{e^6} \frac{1}{6x}dx\)
\(=\frac{1}{6} \int_{1}^{e^6} \frac{1}{x}dx\)
\(= \frac{1}{6} ln(x)|_1^{e^6}\)
\(=\frac{1}{6} [ln(e^6) - ln(1)]\)
\(=\frac{1}{6} [6 - 0]\)
\(=1\)