Answer:

Using substitution method

\(\int 4e^{-7x}dx\)

Let \(u = -7x\)

\(du = -7dx\)

\(-\frac{du}{7} = dx\)

Applying to actual equation,

\(\int 4e^{u} \times -\frac{du}{7}\)

\(\int -\frac{4}{7}e^u du\)

\(-\frac{4}{7} \int e^u du\)

\(-\frac{4}{7} e^u + C\)

Substituting \(u\)

\(-\frac{4}{7} e^{-7x} + C\)

Answer:

Change of bacteria rate

\(\frac{dN}{dt} = -\frac{3150}{t^4}-220\)

Solving for \(N\)

\(dN = (-\frac{3150}{t^4}-220)dt\)

\(\int dN = \int(-\frac{3150}{t^4}-220)dt\)

Using substitution method

Let \(u = \frac{1}{t}\)

\(\int u^4du = \frac{u^{n+1}}{n+1}\)

Applying the values

\(N = \int(-\frac{3150}{t^4}-220)dt\)

\(N = \int-3150{t^{-4}}dt-\int220dt\)

\(N = -3150(\frac{t^{-4+1}}{-4+1}) - 220t\)

\(N = -3150(\frac{t^{-3}}{3}) - 220t\)

\(N = -3150(\frac{1}{3t^3}) - 220t\)

\(N = -\frac{3150}{3t^3} - 220t\)

\(N = -\frac{1050}{t^3} - 220t\)

Level of contamination on \(1^{st}\) day, \(t = 1\)

\(N_1 = \frac{-3150}{3\times1^3} - 220\times 1\)

\(N_1 = -1050 - 220\)

\(N_1 = -1270\)

Level of contamination on \(n^{th}\) day is \(N(t) = Level\ before\ treatment - N_1 - N\)

\(N(t) = 6530 - N_1 - N\)

\(N(t) = 6530 -( -1270) - (-\frac{1050}{t^3} - 220t)\)

\(N(t) = 7800 +\frac{1050}{t^3} + 220t\)

Answer:

From the diagram, \(x\) varies from \(4.5\) to \(8.5\)

Given equation \(f(x) = 2x - 9\),

Since \(x\) is changing

\(\int(fx) dx = \int_{4.5}^{8.5} 2x-9\)

= \(2\times\frac{x^2}{2} - 9x|_{4.5}^{8.5}\)

= \(x^2 - 9x|_{4.5}^{8.5}\)

= \((8.5^2 - 9\times8.5) - (4.5^2 - 9\times4.5)\)

= \(16\)

Area of the rectangles = \(16\) units.

Answer:

Given equations,

\(y = x^2-2x-2\)

\(y = x+2\)

Since \(y\) is defined by two different equations, lets solve \(x\),

\(x^2-2x-2 = x+2\)

= \(x^2 -3x - 4 = 0\)

Using polynomial division ,

\((x + 1)(x-4) = 0\)

Hence \(x = {-1, 4}\)

Area between the curves

\(\int^4_{-1}(x^2-2x-2)dx - \int^4_{-1}(x+2)dx\)

\(\int^4_{-1}(x^2-2x-2 - (x+2))dx\)

\(\int^4_{-1}(x^2-2x-2 - (x+2))dx\)

\(\int^4_{-1}(x^2-3x-4)dx\)

\(\bigg[\frac{x^3}{3}-\frac{3x^2}{2}-4x\bigg]_{-1}^{4}\)

\(\bigg[\frac{4^3}{3} - \frac{3\times4^2}{2} - 4\times4\bigg] - \bigg[\frac{(-1)^3}{3} - \frac{3\times(-1)^2}{2} - 4\times(-1)\bigg]\)

\(\bigg[\frac{64}{3} - \frac{48}{2} - 16\bigg] - \bigg[\frac{-1}{3} - \frac{3}{2} + 4\bigg]\)

x = 4
eq1 = ((x^3)/3) - (3*(x^2)/2) - (4*x)

x = -1
eq2 = ((x^3)/3) - (3*(x^2)/2) - (4*x)

#area cannot be negative
area = abs(eq1 - eq2)

Area between curves = \(20.8333333\) units

Answer:

There are two ways to look at the problem

In both cases selling fast is key. Hence we have to fine-tune storage costs.

Expected flat iron sales = \(110\) units

Let o be required orders and x be number of units per order. Such that \(o \times x = 110\), \(x = \frac{110}{o}\)

Order cost = \(8.25 \times o\), Storage costs = \(3.75 \times x\)

Total cost(\(C\)) = \(8.25 \times o + 3.75 \times x\)

Since we want to reduce storage costs in half

Total cost(\(C\)) = \(8.25 \times o + \frac{3.75 \times x}{2}\)

= \(8.25o + 1.875 x\)

= \(8.25o + 1.875 \times \frac{110}{o}\)

= \(8.25o + \frac{206.25}{o}\)

Using first derivative\(C^{'} = 0\),

= \(\frac{d}{do}(8.25o + \frac{206.25}{o})\)

= \(8.25 - \frac{206.25}{o^2}\)

\(o^2 = \frac{206.25}{8.25}\)

\(o^2 = 25\)

\(o = \sqrt25\)

\(o = 5\)

So number of orders store has to place to reduce storage costs in half = \(5\)

Answer:

\(\int ln(9x).x^6dx\)

Using product of function and derivative of another function

\(\int f(x).g^{'}(x)dx = f(x).g(x) - \int f^{'}(x)g(x)dx\)

\(f(x) = ln(9x)\), \(g^{'}(x) = x^6\)

derivative of \(f(x)\)

\(f^{'}(x) = \frac{d}{dx}ln(9x) = \frac{1}{x}\)

\(g^{'}(x) = x^6\)

integral of \(g^{'}(x)\)

\(\int g^{'}(x) = g(x) = \int x^6 = \frac{x^7}{7}\)

\(f(x).g(x) - \int f^{'}(x)g(x)dx\)

= \(ln(9x)\frac{x^7}{7} - \int \frac{1}{x}\times\frac{x^7}{7}\)

= \(ln(9x)\frac{x^7}{7} - \int \frac{x^6}{7}\)

= \(ln(9x)\frac{x^7}{7} - \frac{1}{7}\int x^6\)

= \(ln(9x)\frac{x^7}{7} - \frac{1}{7}\times \frac{x^7}{7}\)

= \(\frac{x^7}{7} (ln(9x)- \frac{1}{7})\)

Answer:

\(\int_1^{e^6}\frac{1}{6x}dx\)

= \(\frac{1}{6}\int_1^{e^6}\frac{1}{x}dx\)

= \(\frac{1}{6}\int_1^{e^6}\frac{1}{x}dx\)

= \(\frac{1}{6}\bigg[ln(x)\bigg]_1^{e^6}\)

= \(\frac{1}{6}\bigg[ln(e^6) - ln(1)\bigg]\)

= \(\frac{1}{6}\bigg[6 - 0\bigg]\)

= \(1\)

References