Summary of coded data

##          study_ID                            short_cite expt_num 
##  merriman1989:17   Merriman et al. (1989)         :17   1  :108  
##  frank2016   :12   Frank et al. (2016)            :12   1-2:  1  
##  gollek2016  :10   Gollek & Doherty (2016)        :10   2  : 25  
##  jarvis2004  : 9   Jarvis et al. (2004)           : 9   2a :  4  
##  markman2003 : 8   Markman, Wasow, & Hansen (2003): 8   2b :  2  
##  merriman1991: 8   Merriman & Schuster (1991)     : 8   3  : 15  
##  (Other)     :93   (Other)                        :93   4  :  2  
##       response_mode           dependent_measure           native_lang
##  behavior    :131   looking_time_change: 10     American English:42  
##  eye-tracking: 26   target_selection   :147     English         :32  
##                                                 British English :12  
##                                                 Canadian English: 5  
##                                                 German Germany  : 5  
##                                                 (Other)         :21  
##                                                 NA's            :40  
##                               infant_type       n_1       
##  typical                            :135   Min.   : 5.00  
##  bilingual                          : 10   1st Qu.:15.00  
##  ASD                                :  4   Median :16.00  
##  specific language imparement (SLI) :  3   Mean   :19.06  
##  trilingual                         :  2   3rd Qu.:22.00  
##  deaf/hard-of-hearing preschoolers w:  1   Max.   :72.00  
##  (Other)                            :  2                  
##    mean_age_1          x_1               x_2              SD_1        
##  Min.   : 445.2   Min.   :-0.0300   Min.   :0.0000   Min.   :0.02196  
##  1st Qu.: 730.5   1st Qu.: 0.5308   1st Qu.:0.5000   1st Qu.:0.16606  
##  Median : 974.0   Median : 0.6738   Median :0.5000   Median :0.23000  
##  Mean   :1133.3   Mean   : 0.6538   Mean   :0.4518   Mean   :0.27439  
##  3rd Qu.:1461.0   3rd Qu.: 0.8295   3rd Qu.:0.5000   3rd Qu.:0.29866  
##  Max.   :3926.4   Max.   : 0.9860   Max.   :0.5000   Max.   :2.08000  
##                   NA's   :15        NA's   :16       NA's   :25       
##        t                d               d_var              object_stimulus
##  Min.   :-3.140   Min.   :-0.9467   Min.   :0.02801   digital      :35    
##  1st Qu.: 1.555   1st Qu.: 0.2436   1st Qu.:0.10614   objects      :76    
##  Median : 3.645   Median : 1.0790   Median :0.13219   objects/paper: 1    
##  Mean   : 5.113   Mean   : 1.4551   Mean   :0.17196   paper        :45    
##  3rd Qu.: 5.168   3rd Qu.: 1.8525   3rd Qu.:0.20219                       
##  Max.   :31.700   Max.   :11.4100   Max.   :0.86701                       
##  NA's   :119      NA's   :93        NA's   :104                           
##      N_AFC     mean_comprehension_vocab mean_production_vocab
##  N_AFC-2:138   Min.   :156.0            Min.   : 35.0        
##  N_AFC-3: 11   1st Qu.:226.8            1st Qu.: 76.0        
##  N_AFC-4:  6   Median :295.7            Median :158.9        
##  N_AFC-5:  2   Mean   :292.2            Mean   :191.7        
##                3rd Qu.:357.0            3rd Qu.:225.8        
##                Max.   :449.0            Max.   :534.0        
##                NA's   :136              NA's   :128          
##  N_langs                                                     d_notes   
##  Mode:logical   dissertation                                     :  4  
##  NA's:157       looking and pointing - I report pointing         :  3  
##                 sd imputed based on 3-4 greek bilinguals (from t):  3  
##                 ASD: high-functioning                            :  1  
##                 ASD: high-risk                                   :  1  
##                 (Other)                                          :  4  
##                 NA's                                             :141  
##                infant_type2 ME_trial_type                    data_source 
##  typical             :135   FN:136        figure                   : 13  
##  bilingual           : 10   NN: 21        paper                    :107  
##  ASD                 :  4                 paper - some calculations:  7  
##  SLI                 :  3                 paper - some imputation  :  4  
##  trilingual          :  2                 paper/author             : 26  
##  deaf/hard-of-hearing:  1                 raw data from paper      :  0  
##  (Other)             :  2                                                
##     lab_group      d_calc          d_var_calc         mean_age     
##  merriman:48   Min.   :-0.9467   Min.   :0.01435   Min.   : 14.63  
##  framkm  :12   1st Qu.: 0.2887   1st Qu.:0.06383   1st Qu.: 24.00  
##  gollek  :10   Median : 0.8734   Median :0.08558   Median : 32.00  
##  markman :10   Mean   : 1.3293   Mean   :0.22861   Mean   : 37.23  
##  estis   : 7   3rd Qu.: 1.8500   3rd Qu.:0.17323   3rd Qu.: 48.00  
##  horst   : 6   Max.   : 9.3462   Max.   :2.97835   Max.   :129.00  
##  (Other) :64                                                       
##       year     
##  Min.   :1988  
##  1st Qu.:1998  
##  Median :2004  
##  Mean   :2005  
##  3rd Qu.:2014  
##  Max.   :2017  
## 
infant types
infant_type2 n
ASD 4
bilingual 10
deaf/hard-of-hearing 1
DS 1
late_talkers 1
SLI 3
trilingual 2
typical 135
trial types
ME_trial_type n
FN 136
NN 21

There are 157 conditions. There are 43 in the sample. There are 28 lab groups in the sample (lab group is defined as the senior author (common across studies), or the last author).

production vocab
!is.na(mean_production_vocab) infant_type n
FALSE ASD 3
FALSE bilingual 8
FALSE late_talkers 1
FALSE specific language imparement (SLI) 3
FALSE trilingual 1
FALSE typical 112
TRUE ASD 1
TRUE bilingual 2
TRUE deaf/hard-of-hearing preschoolers w 1
TRUE DS 1
TRUE trilingual 1
TRUE typical 23
comprehension vocab
!is.na(mean_comprehension_vocab) n
FALSE 136
TRUE 21

Forest plot

Fail-safe-N

dataset fsn_string
mutex 20713

Funnel plot

With age and response mode and trial type moderators

Eggers test

dataset egg.random.z egg.random.p
mutex 17.31427 0

Evidence for skew. Lots of heterogenity.

P-curve

Stouffer test

pp.measure Z.pp p.Z.pp sig
ppr.full -27.16405 0 TRUE

Strong evidence for left skew (no phacking).

MA models

Simple (no moderators)

## 
## Multivariate Meta-Analysis Model (k = 157; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc  
## -437.5768   875.1535   879.1535   885.2532   879.2319  
## 
## Variance Components: 
## 
##             estim    sqrt  nlvls  fixed      factor
## sigma^2    0.6353  0.7970     44     no  short_cite
## 
## Test for Heterogeneity: 
## Q(df = 156) = 1379.1191, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub     
##   1.0576  0.1256  8.4235  <.0001  0.8115  1.3037  ***
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ME_trial type

## 
## Multivariate Meta-Analysis Model (k = 157; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc  
## -427.1495   854.2990   860.2990   869.4292   860.4579  
## 
## Variance Components: 
## 
##             estim    sqrt  nlvls  fixed      factor
## sigma^2    0.8893  0.9430     44     no  short_cite
## 
## Test for Residual Heterogeneity: 
## QE(df = 155) = 1371.6365, p-val < .0001
## 
## Test of Moderators (coefficient(s) 2): 
## QM(df = 1) = 21.5920, p-val < .0001
## 
## Model Results:
## 
##                  estimate      se     zval    pval    ci.lb    ci.ub     
## intrcpt            1.2065  0.1498   8.0569  <.0001   0.9130   1.5000  ***
## ME_trial_typeNN   -0.7107  0.1529  -4.6467  <.0001  -1.0105  -0.4109  ***
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Age

## 
## Multivariate Meta-Analysis Model (k = 157; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc  
## -356.4074   712.8148   720.8148   732.9626   721.0833  
## 
## Variance Components: 
## 
##             estim    sqrt  nlvls  fixed      factor
## sigma^2    0.5954  0.7716     44     no  short_cite
## 
## Test for Residual Heterogeneity: 
## QE(df = 154) = 1121.3202, p-val < .0001
## 
## Test of Moderators (coefficient(s) 2:3): 
## QM(df = 2) = 160.4053, p-val < .0001
## 
## Model Results:
## 
##                  estimate      se     zval    pval    ci.lb    ci.ub     
## intrcpt           -0.1419  0.1664  -0.8528  0.3938  -0.4681   0.1842     
## mean_age           0.0369  0.0031  11.9606  <.0001   0.0309   0.0430  ***
## ME_trial_typeNN   -0.9187  0.1499  -6.1285  <.0001  -1.2125  -0.6249  ***
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Age is reliable, controling for ME_trial_type

Vocab

(we don’t have production scores for any NN trials)

## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc  
## -27.8365   55.6730   61.6730   65.5605   62.7165  
## 
## Variance Components: 
## 
##             estim    sqrt  nlvls  fixed      factor
## sigma^2    0.4073  0.6382     11     no  short_cite
## 
## Test for Residual Heterogeneity: 
## QE(df = 27) = 131.2620, p-val < .0001
## 
## Test of Moderators (coefficient(s) 2): 
## QM(df = 1) = 8.6147, p-val = 0.0033
## 
## Model Results:
## 
##                        estimate      se    zval    pval    ci.lb   ci.ub
## intrcpt                  0.4909  0.2619  1.8744  0.0609  -0.0224  1.0041
## mean_production_vocab    0.0024  0.0008  2.9351  0.0033   0.0008  0.0039
##                          
## intrcpt                 .
## mean_production_vocab  **
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Vocab is reliable

Age + Vocab

Plots

Correlation between age and vocab:

estimate statistic p.value parameter conf.low conf.high method alternative
0.3512851 1.94958 0.0616829 27 -0.0174698 0.6359177 Pearson’s product-moment correlation two.sided

Age and vocab are weakly correlated, not quite significant. Note the heterskadastisky!

Age and vocab vs. effect size

Typical only

Models

## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc  
## -30.6257   61.2515   67.2515   71.1390   68.2949  
## 
## Variance Components: 
## 
##             estim    sqrt  nlvls  fixed      factor
## sigma^2    0.6174  0.7857     11     no  short_cite
## 
## Test for Residual Heterogeneity: 
## QE(df = 27) = 153.7200, p-val < .0001
## 
## Test of Moderators (coefficient(s) 2): 
## QM(df = 1) = 1.1347, p-val = 0.2868
## 
## Model Results:
## 
##           estimate      se    zval    pval    ci.lb   ci.ub   
## intrcpt     0.5485  0.4807  1.1410  0.2539  -0.3937  1.4907   
## mean_age    0.0155  0.0146  1.0652  0.2868  -0.0130  0.0440   
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc  
## -27.8365   55.6730   61.6730   65.5605   62.7165  
## 
## Variance Components: 
## 
##             estim    sqrt  nlvls  fixed      factor
## sigma^2    0.4073  0.6382     11     no  short_cite
## 
## Test for Residual Heterogeneity: 
## QE(df = 27) = 131.2620, p-val < .0001
## 
## Test of Moderators (coefficient(s) 2): 
## QM(df = 1) = 8.6147, p-val = 0.0033
## 
## Model Results:
## 
##                        estimate      se    zval    pval    ci.lb   ci.ub
## intrcpt                  0.4909  0.2619  1.8744  0.0609  -0.0224  1.0041
## mean_production_vocab    0.0024  0.0008  2.9351  0.0033   0.0008  0.0039
##                          
## intrcpt                 .
## mean_production_vocab  **
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc  
## -27.0414   54.0828   62.0828   67.1151   63.9875  
## 
## Variance Components: 
## 
##             estim    sqrt  nlvls  fixed      factor
## sigma^2    0.3819  0.6180     11     no  short_cite
## 
## Test for Residual Heterogeneity: 
## QE(df = 26) = 114.7773, p-val < .0001
## 
## Test of Moderators (coefficient(s) 2:3): 
## QM(df = 2) = 9.4131, p-val = 0.0090
## 
## Model Results:
## 
##                        estimate      se    zval    pval    ci.lb   ci.ub
## intrcpt                  0.2672  0.4170  0.6406  0.5218  -0.5502  1.0846
## mean_age                 0.0088  0.0134  0.6549  0.5125  -0.0175  0.0351
## mean_production_vocab    0.0022  0.0008  2.6903  0.0071   0.0006  0.0039
##                          
## intrcpt                  
## mean_age                 
## mean_production_vocab  **
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Typical only:

## 
## Multivariate Meta-Analysis Model (k = 23; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc  
## -17.1061   34.2122   42.2122   46.1951   44.8789  
## 
## Variance Components: 
## 
##             estim    sqrt  nlvls  fixed      factor
## sigma^2    0.5170  0.7190      8     no  short_cite
## 
## Test for Residual Heterogeneity: 
## QE(df = 20) = 86.1817, p-val < .0001
## 
## Test of Moderators (coefficient(s) 2:3): 
## QM(df = 2) = 10.2650, p-val = 0.0059
## 
## Model Results:
## 
##                        estimate      se     zval    pval    ci.lb   ci.ub
## intrcpt                 -0.7825  0.7066  -1.1076  0.2681  -2.1674  0.6023
## mean_age                 0.0705  0.0329   2.1435  0.0321   0.0060  0.1350
## mean_production_vocab    0.0004  0.0012   0.3149  0.7528  -0.0019  0.0027
##                         
## intrcpt                 
## mean_age               *
## mean_production_vocab   
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

With set of conditions with complete production and age, age is not a reliable predictor, vocab is. In model with both, vocab is reliable. But for subset of typical participants, age but not vocab is predictive.

Misc MA summary stats (for typical only)

Some evidence for a relationship between effect size and sample size: smaller ES, bigger ns (residualizing out age and method)

Sample size and effect size

ME trial type

Controling for age, huge effect of ME_trial_type

Stimulus type

No effect

Lab group

Not interpretable (small sample sizes)

Time

Effect gets bigger over time, residulaizing out method and age

Mega developmental plot