Using the spatial visualization techniques, we explore the data set on Pennsylvania hospitals (http://www.arcgis.com/). We create a series of 5 maps that highlight spatial differences in hospital service coverage for the state of PA.
To import the data we used the foreign package.
HospitalsPA <- read.dbf("C:/Harrisburg University Classes/Sem 2 - Fall 2017/ANLY-512 Data Visualisation/Assignments/Problem Set 5/pennsylv/pennsylv.dbf")
PA_Hospitals <- as.data.frame(HospitalsPA)
# View(PA_Hospitals)
# PA state terrain map
PA_state1 <- get_map(location = "pennsylvania state", zoom = 6,
maptype = "terrain")
## Map from URL : http://maps.googleapis.com/maps/api/staticmap?center=pennsylvania+state&zoom=6&size=640x640&scale=2&maptype=terrain&language=en-EN&sensor=false
## Information from URL : http://maps.googleapis.com/maps/api/geocode/json?address=pennsylvania%20state&sensor=false
PA_terrain <- ggmap(PA_state1, extent = "device")
# Philadelphia city terrain map
Philly1 <- get_map(location = "Philadelphia", zoom = 12,
maptype = "terrain")
## Map from URL : http://maps.googleapis.com/maps/api/staticmap?center=Philadelphia&zoom=12&size=640x640&scale=2&maptype=terrain&language=en-EN&sensor=false
## Information from URL : http://maps.googleapis.com/maps/api/geocode/json?address=Philadelphia&sensor=false
Philly_terrain <- ggmap(Philly1, extent = "device")
# Philadelphia city tonerlite map
Philly2 <- get_map(location = "Philadelphia", zoom = 11,
maptype = "toner-lite")
## maptype = "toner-lite" is only available with source = "stamen".
## resetting to source = "stamen"...
## Map from URL : http://maps.googleapis.com/maps/api/staticmap?center=Philadelphia&zoom=11&size=640x640&scale=2&maptype=terrain&sensor=false
## Information from URL : http://maps.googleapis.com/maps/api/geocode/json?address=Philadelphia&sensor=false
## Map from URL : http://tile.stamen.com/toner-lite/11/595/774.png
## Map from URL : http://tile.stamen.com/toner-lite/11/596/774.png
## Map from URL : http://tile.stamen.com/toner-lite/11/597/774.png
## Map from URL : http://tile.stamen.com/toner-lite/11/595/775.png
## Map from URL : http://tile.stamen.com/toner-lite/11/596/775.png
## Map from URL : http://tile.stamen.com/toner-lite/11/597/775.png
## Map from URL : http://tile.stamen.com/toner-lite/11/595/776.png
## Map from URL : http://tile.stamen.com/toner-lite/11/596/776.png
## Map from URL : http://tile.stamen.com/toner-lite/11/597/776.png
Philly_tonerlite <- ggmap(Philly2, extent = "device")
# All Hospitals in PA Map
PA_terrain +
geom_point(aes(x = x, y = y),
data = PA_Hospitals,
col="red", alpha = 0.4)
# Hospitals with Air Ambulance facilities
Air_Ambulance <- PA_Hospitals %>%
filter(air_amb == "Y")
# Air Ambulance Map
PA_terrain +
geom_point(aes(x = x, y = y),
data = Air_Ambulance,
col="red", alpha = 0.4)
# Hospitals with ICU facility
ICU <- PA_Hospitals %>%
filter(!is.na(icu)) %>%
filter(icu == "Y")
PA_terrain +
geom_point(aes(x = x, y = y),
data = ICU,
col= "red", alpha = 0.2)
# Organ Bank locations
Organ_Bank <- PA_Hospitals %>%
filter(!is.na(organ_bank)) %>%
filter(organ_bank == "Y")
# Organ Bank Map
PA_terrain +
geom_point(aes(x = x, y = y),
data = Organ_Bank,
col="red", alpha = 0.4)
# Bed_sus density in PA state
Beds_sus <- PA_Hospitals %>%
filter(!is.na(beds_sus))
PA_terrain +
geom_density2d(data = Beds_sus, aes(x = x, y = y), size = 0.3) +
stat_density2d(data = Beds_sus,
aes(x = x, y = y,
fill = ..level..,
alpha = ..level..),
size = 0.01,
bins = 16, geom = "polygon") +
scale_fill_gradient(low = "green", high = "red") +
scale_alpha(range = c(0,0.3),
guide = FALSE)
# Hospitals in Philadelphia city with liver transplant facility
Liver_transplant <- PA_Hospitals %>%
filter(!is.na(liver_tran)) %>%
filter(liver_tran == "Y" & city == "Philadelphia")
Philly_tonerlite +
geom_point(aes(x = x, y = y),
data = Liver_transplant,
col="red", alpha = 0.6)