\[ height = \frac{2}{3} diameter = \frac{4}{3}radius; \ radius = \frac {3}{4}height \\ V = \frac{\pi r^2 h}{3} = \frac{3 \pi h^3}{16}; \ h = \sqrt[3]{\frac {16V}{3 \pi}} \\ \frac {dV}{dt} = 5 ft^3/sec = \frac {9 \pi h^2}{16} \frac {dh}{dt} \\ \frac {dh}{dt} = \frac {5*16}{9 \pi h^2} = \frac {80}{9 \pi h^2} \\ h = 30, \frac {dh}{dt} = \frac {80}{8100 \pi} = \\ sand \ pile \ height \ is \ increasing \ 0.003 \ ft \ per \ second \]
Let’s double check our calculation by calculating the difference in heights one second apart, with the first height at 30 ft.
rate = 5
height = 30
radius = height*3/4
volume = pi*radius^2*height/3
volume1 = volume + 5
height1 = (16*volume1/(3*pi))^(1/3)
diff = height1 - height
print(paste0("The increase in height after 1 second, at initial height = 30 ft: ",
round(diff, 4), "ft"))
## [1] "The increase in height after 1 second, at initial height = 30 ft: 0.0031ft"