library(robustHD)
library(readxl)

P/Net Sales

Beroende variabel: P/Net Sales
Oberoende Variabel: Ledare(1)

Deskriptiv statistik för P/Net Sales

Psales <- read_excel("~/Documents/analysis/psales.xlsx")
summary(Psales$`P/Net sales`)
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
 0.00016  0.59745  1.31189  2.86302  2.60889 42.82621 




Parametriskt test: T-test av P/Net Sales

#H0: P/Net Sales ar lika for ledare och foljare
#t-test
t.test(Psales$`P/Net sales` ~ Psales$Leader, mu=0, alt="two.sided")

    Welch Two Sample t-test

data:  Psales$`P/Net sales` by Psales$Leader
t = 2.5523, df = 73.889, p-value = 0.01277
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.3113215 2.5278742
sample estimates:
mean in group 0 mean in group 1 
       2.939759        1.520162 
boxplot(Psales$`P/Net sales` ~ Psales$Leader)




Parametriskt test: Winsoriserat(5%) t-test av ‘P/Net Sales’

t.test(winsorize(Psales$`P/Net sales`) ~Psales$Leader, mu=0, alt="two.sided")

    Welch Two Sample t-test

data:  winsorize(Psales$`P/Net sales`) by Psales$Leader
t = 0.48236, df = 9.3824, p-value = 0.6406
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.5379892  0.8319103
sample estimates:
mean in group 0 mean in group 1 
       1.667122        1.520162 
boxplot(winsorize(Psales$`P/Net sales`)~Psales$Leader)




Icke-parametriskt test: Mann-Whitney U-test

wilcox.test(Psales$`P/Net sales`~Psales$Leader, mu=0, alt="less", conf.int=T, conf.level=0.95, paired=F, exact=T,correct=T)

    Wilcoxon rank sum test

data:  Psales$`P/Net sales` by Psales$Leader
W = 530, p-value = 0.403
alternative hypothesis: true location shift is less than 0
95 percent confidence interval:
      -Inf 0.7360202
sample estimates:
difference in location 
           -0.08125674 

P/EBITDA

Beroende variabel: P/EBITDA
Oberoende Variabel: Ledare(1)


Deskriptiv statistik för P/EBITDA

Pebitda <- read_excel("~/Documents/analysis/pebitda.xlsx")
summary(Pebitda$`P/EBITDA`)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
-2.4066  0.4552  0.8967  2.5901  1.6212 64.7410 




Parametriskt test: T-test av P/EBITDA

#t-test
t.test(Pebitda$`P/EBITDA` ~Pebitda$Leader, mu=0, alt="two.sided")

    Welch Two Sample t-test

data:  Pebitda$`P/EBITDA` by Pebitda$Leader
t = 1.4078, df = 87.192, p-value = 0.1628
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.4305258  2.5213128
sample estimates:
mean in group 0 mean in group 1 
       2.641281        1.595888 
boxplot(Pebitda$`P/EBITDA` ~Pebitda$Leader)




Parametriskt test: Winsoriserat(5%) t-test av ‘P/Net Sales’

t.test(winsorize(Pebitda$`P/EBITDA`) ~Pebitda$Leader, mu=0, alt="two.sided")

    Welch Two Sample t-test

data:  winsorize(Pebitda$`P/EBITDA`) by Pebitda$Leader
t = -1.4831, df = 6.8288, p-value = 0.1827
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1.0866944  0.2515793
sample estimates:
mean in group 0 mean in group 1 
       1.081034        1.498591 
boxplot(winsorize(Pebitda$`P/EBITDA`) ~Pebitda$Leader)




Icke-parametriskt test: Mann-Whitney U-test

wilcox.test(Pebitda$`P/EBITDA`~Pebitda$Leader, mu=0, alt="greater", conf.int=T, conf.level=0.95, paired=F, exact=T,correct=T)

    Wilcoxon rank sum test

data:  Pebitda$`P/EBITDA` by Pebitda$Leader
W = 325, p-value = 0.9202
alternative hypothesis: true location shift is greater than 0
95 percent confidence interval:
 -0.9488513        Inf
sample estimates:
difference in location 
            -0.4392584 

P/EPS

Beroende variabel: P/EPS
Oberoende Variabel: Ledare(1)




Deskriptiv statistik:

Peps <- read_excel("~/Documents/analysis/peps.xlsx")
summary(Peps$`P/EPS`)
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
-138.1499    0.1547    0.7413    0.3884    1.5769   63.6761 




Parametriskt test: T-test av P/EPS

t.test(Peps$`P/EPS` ~Peps$Leader, mu=0, alt="two.sided")

    Welch Two Sample t-test

data:  Peps$`P/EPS` by Peps$Leader
t = -0.46903, df = 141.25, p-value = 0.6398
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -3.038867  1.873408
sample estimates:
mean in group 0 mean in group 1 
      0.3541537       0.9368830 
boxplot(Peps$`P/EPS` ~Peps$Leader)




Parametriskt test: Winsoriserat(5%) t-test av ‘P/EPS’

t.test(winsorize(Peps$`P/EPS`) ~Peps$Leader, mu=0, alt="two.sided")

    Welch Two Sample t-test

data:  winsorize(Peps$`P/EPS`) by Peps$Leader
t = -0.027212, df = 9.3798, p-value = 0.9789
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.8329783  0.8130559
sample estimates:
mean in group 0 mean in group 1 
      0.8421871       0.8521483 
boxplot(winsorize(Peps$`P/EPS`) ~Peps$Leader)




Icke-parametriskt test: Mann-Whitney U-test

wilcox.test(Peps$`P/EPS`~Peps$Leader, mu=0, alt="two.sided", conf.int=T, conf.level=0.95, paired=F, exact=T,correct=T)

    Wilcoxon rank sum test

data:  Peps$`P/EPS` by Peps$Leader
W = 684, p-value = 0.7866
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
 -0.7913083  0.8234610
sample estimates:
difference in location 
             0.1206787 
LS0tCnRpdGxlOiAiQXBwZW5kaXgiCm91dHB1dDoKICBodG1sX25vdGVib29rOiBkZWZhdWx0CiAgaHRtbF9kb2N1bWVudDogZGVmYXVsdAogIHBkZl9kb2N1bWVudDogZGVmYXVsdAotLS0KCgpgYGB7cn0KCmxpYnJhcnkocm9idXN0SEQpCmxpYnJhcnkocmVhZHhsKQoKYGBgCgojIyBQL05ldCBTYWxlcwoKQmVyb2VuZGUgdmFyaWFiZWw6IFAvTmV0IFNhbGVzCjxicj5PYmVyb2VuZGUgVmFyaWFiZWw6IExlZGFyZSgxKQo8YnI+PGJyPgoqKkRlc2tyaXB0aXYgc3RhdGlzdGlrIGbDtnIgUC9OZXQgU2FsZXMqKgoKYGBge3J9ClBzYWxlcyA8LSByZWFkX2V4Y2VsKCJ+L0RvY3VtZW50cy9hbmFseXNpcy9wc2FsZXMueGxzeCIpCnN1bW1hcnkoUHNhbGVzJGBQL05ldCBzYWxlc2ApCmBgYAoKCgoKPGJyPjxicj48YnI+CioqUGFyYW1ldHJpc2t0IHRlc3Q6IFQtdGVzdCBhdiBQL05ldCBTYWxlcyoqCmBgYHtyfQojSDA6IFAvTmV0IFNhbGVzIGFyIGxpa2EgZm9yIGxlZGFyZSBvY2ggZm9samFyZQoKI3QtdGVzdAp0LnRlc3QoUHNhbGVzJGBQL05ldCBzYWxlc2AgfiBQc2FsZXMkTGVhZGVyLCBtdT0wLCBhbHQ9InR3by5zaWRlZCIpCmJveHBsb3QoUHNhbGVzJGBQL05ldCBzYWxlc2AgfiBQc2FsZXMkTGVhZGVyKQoKCmBgYAo8YnI+PGJyPjxicj4KKipQYXJhbWV0cmlza3QgdGVzdDogV2luc29yaXNlcmF0KDUlKSB0LXRlc3QgYXYgJ1AvTmV0IFNhbGVzJyoqCmBgYHtyfQp0LnRlc3Qod2luc29yaXplKFBzYWxlcyRgUC9OZXQgc2FsZXNgKSB+UHNhbGVzJExlYWRlciwgbXU9MCwgYWx0PSJ0d28uc2lkZWQiKQpib3hwbG90KHdpbnNvcml6ZShQc2FsZXMkYFAvTmV0IHNhbGVzYCl+UHNhbGVzJExlYWRlcikKCmBgYAo8YnI+PGJyPjxicj4KKipJY2tlLXBhcmFtZXRyaXNrdCB0ZXN0OiBNYW5uLVdoaXRuZXkgVS10ZXN0KioKCmBgYHtyfQp3aWxjb3gudGVzdChQc2FsZXMkYFAvTmV0IHNhbGVzYH5Qc2FsZXMkTGVhZGVyLCBtdT0wLCBhbHQ9Imxlc3MiLCBjb25mLmludD1ULCBjb25mLmxldmVsPTAuOTUsIHBhaXJlZD1GLCBleGFjdD1ULGNvcnJlY3Q9VCkKCmBgYAoKIyNQL0VCSVREQQpCZXJvZW5kZSB2YXJpYWJlbDogUC9FQklUREEKPGJyPgpPYmVyb2VuZGUgVmFyaWFiZWw6IExlZGFyZSgxKQoKPGJyPgoqKkRlc2tyaXB0aXYgc3RhdGlzdGlrIGbDtnIgUC9FQklUREEqKgpgYGB7cn0KUGViaXRkYSA8LSByZWFkX2V4Y2VsKCJ+L0RvY3VtZW50cy9hbmFseXNpcy9wZWJpdGRhLnhsc3giKQpzdW1tYXJ5KFBlYml0ZGEkYFAvRUJJVERBYCkKYGBgCgo8YnI+PGJyPjxicj4KCioqUGFyYW1ldHJpc2t0IHRlc3Q6IFQtdGVzdCBhdiBQL0VCSVREQSoqCgpgYGB7cn0KI3QtdGVzdAp0LnRlc3QoUGViaXRkYSRgUC9FQklUREFgIH5QZWJpdGRhJExlYWRlciwgbXU9MCwgYWx0PSJ0d28uc2lkZWQiKQpib3hwbG90KFBlYml0ZGEkYFAvRUJJVERBYCB+UGViaXRkYSRMZWFkZXIpCmBgYAoKCjxicj48YnI+PGJyPgoqKlBhcmFtZXRyaXNrdCB0ZXN0OiBXaW5zb3Jpc2VyYXQoNSUpIHQtdGVzdCBhdiAnUC9OZXQgU2FsZXMnKioKCgpgYGB7cn0KdC50ZXN0KHdpbnNvcml6ZShQZWJpdGRhJGBQL0VCSVREQWApIH5QZWJpdGRhJExlYWRlciwgbXU9MCwgYWx0PSJ0d28uc2lkZWQiKQpib3hwbG90KHdpbnNvcml6ZShQZWJpdGRhJGBQL0VCSVREQWApIH5QZWJpdGRhJExlYWRlcikKYGBgCgo8YnI+PGJyPjxicj4KKipJY2tlLXBhcmFtZXRyaXNrdCB0ZXN0OiBNYW5uLVdoaXRuZXkgVS10ZXN0KioKYGBge3J9CndpbGNveC50ZXN0KFBlYml0ZGEkYFAvRUJJVERBYH5QZWJpdGRhJExlYWRlciwgbXU9MCwgYWx0PSJncmVhdGVyIiwgY29uZi5pbnQ9VCwgY29uZi5sZXZlbD0wLjk1LCBwYWlyZWQ9RiwgZXhhY3Q9VCxjb3JyZWN0PVQpCgoKYGBgCiMjUC9FUFMKQmVyb2VuZGUgdmFyaWFiZWw6IFAvRVBTPGJyPgpPYmVyb2VuZGUgVmFyaWFiZWw6IExlZGFyZSgxKQoKPGJyPjxicj48YnI+CioqRGVza3JpcHRpdiBzdGF0aXN0aWs6KioKYGBge3J9ClBlcHMgPC0gcmVhZF9leGNlbCgifi9Eb2N1bWVudHMvYW5hbHlzaXMvcGVwcy54bHN4IikKc3VtbWFyeShQZXBzJGBQL0VQU2ApCmBgYAoKCjxicj48YnI+PGJyPgoqKlBhcmFtZXRyaXNrdCB0ZXN0OiBULXRlc3QgYXYgUC9FUFMqKgoKYGBge3J9CnQudGVzdChQZXBzJGBQL0VQU2AgflBlcHMkTGVhZGVyLCBtdT0wLCBhbHQ9InR3by5zaWRlZCIpCmJveHBsb3QoUGVwcyRgUC9FUFNgIH5QZXBzJExlYWRlcikKYGBgCgo8YnI+PGJyPjxicj4KKipQYXJhbWV0cmlza3QgdGVzdDogV2luc29yaXNlcmF0KDUlKSB0LXRlc3QgYXYgJ1AvRVBTJyoqCmBgYHtyfQp0LnRlc3Qod2luc29yaXplKFBlcHMkYFAvRVBTYCkgflBlcHMkTGVhZGVyLCBtdT0wLCBhbHQ9InR3by5zaWRlZCIpCmJveHBsb3Qod2luc29yaXplKFBlcHMkYFAvRVBTYCkgflBlcHMkTGVhZGVyKQpgYGAKCjxicj48YnI+PGJyPgoqKklja2UtcGFyYW1ldHJpc2t0IHRlc3Q6IE1hbm4tV2hpdG5leSBVLXRlc3QqKgoKYGBge3J9CndpbGNveC50ZXN0KFBlcHMkYFAvRVBTYH5QZXBzJExlYWRlciwgbXU9MCwgYWx0PSJ0d28uc2lkZWQiLCBjb25mLmludD1ULCBjb25mLmxldmVsPTAuOTUsIHBhaXJlZD1GLCBleGFjdD1ULGNvcnJlY3Q9VCkKCmBgYAoKCgo=