Warm up
install.packages(“fpp”) library(“fpp”) library(“rmarkdown”)
help(EuStockMarkets)
stocks <- EuStockMarkets data(stocks) summary(stocks) class(stocks)
head(stocks, n=10)
plot(stocks, main = ‘Time series analysis for EU stock data’, col=‘blue’) abline(v=1997, col=“red”)
?plot
stocksts <- ts(stocks, frequency = 12) plot(stocksts)
CAC <- stocksts[,‘CAC’] CAC CAC_ts <- ts(CAC, frequency = 120) decompose_CAC <- decompose(CAC_ts, ‘multiplicative’)
plot(as.ts(decompose_CAC\(seasonal)) plot(as.ts(decompose_CAC\)trend)) plot(as.ts(decompose_CAC$random)) plot(decompose_CAC, col=‘blue’) abline(v=13, col=“red”)
DAX <- stocksts[,‘DAX’] DAX DAX_ts <- ts(DAX, frequency = 120) decompose_DAX <- decompose(DAX_ts, ‘multiplicative’)
plot(as.ts(decompose_DAX\(seasonal)) plot(as.ts(decompose_DAX\)trend)) plot(as.ts(decompose_DAX$random)) plot(decompose_DAX, col=‘blue’) abline(v=13, col=“red”)
SMI <- stocksts[,‘SMI’] SMI SMI_ts <- ts(SMI, frequency = 120) decompose_SMI <- decompose(SMI_ts, ‘multiplicative’)
plot(as.ts(decompose_SMI\(seasonal)) plot(as.ts(decompose_SMI\)trend)) plot(as.ts(decompose_SMI$random)) plot(decompose_SMI, col=‘blue’) abline(v=13, col=“red”)
FTSE <- stocksts[,‘FTSE’] FTSE FTSE_ts <- ts(FTSE, frequency = 120) decompose_FTSE <- decompose(FTSE_ts, ‘multiplicative’)
plot(as.ts(decompose_FTSE\(seasonal)) plot(as.ts(decompose_FTSE\)trend)) plot(as.ts(decompose_FTSE$random)) plot(decompose_FTSE, col=‘blue’) abline(v=13, col=“red”)
QUESTION 2
install.packages(“fpp2”) library(fpp2) help(maxtemp)
colnames(maxtemp) colnames(maxtemp)[1] <- ‘year’ colnames(maxtemp)[2] <- ‘temp’
head(maxtemp, n=10)
data(maxtemp) maxtemp <- maxtemp maxtemp summary(maxtemp)
autoplot(maxtemp)
plot(subset)
maxtemp_ts <- ts(maxtemp, frequency = 2) plot(maxtemp_ts)
ses <- ses(maxtemp_ts[10:25], h=5, alpha=0.1, initial=“optimal”) plot(ses)
fit <- HoltWinters(maxtemp_ts, gamma=FALSE)
library(forecast) accuracy(fit) AIC(fit, k=1)
library(forecast) forecast(fit, 3) plot(forecast(fit, 3))
?ses
installed.packages(‘dygraphs’) library(dygraphs)
QUESTION 3
oliv <- Unit11TimeSeries_Ollivander oliv
greg <- Unit11TimeSeries_Gregorovitch greg
colnames(greg) colnames(greg)[1] <- ‘date’ colnames(greg)[2] <- ‘value’
colnames(oliv) colnames(oliv)[1] <- ‘date’ colnames(oliv)[2] <- ‘value’
install.packages(“xts”) library(xts)
olivxts <- xts(oliv[, -1], order.by=as.Date(oliv\(date)) gregxts <- xts(greg[, -1], order.by=as.Date(greg\)date))