whoData <- read.csv('https://raw.githubusercontent.com/NNedd/DATA605/master/Asssignment12/who.csv', stringsAsFactors = FALSE)
plot(whoData[,"LifeExp"], whoData[,"TotExp"], main="Life Expectancy as a function of Total Expenditure", xlab = "Life Exectancy", ylab="Total Expenditure")
lfunction <- lm(whoData$LifeExp ~ whoData$TotExp)
lfunction
##
## Call:
## lm(formula = whoData$LifeExp ~ whoData$TotExp)
##
## Coefficients:
## (Intercept) whoData$TotExp
## 6.475e+01 6.297e-05
summary(lfunction)
##
## Call:
## lm(formula = whoData$LifeExp ~ whoData$TotExp)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.764 -4.778 3.154 7.116 13.292
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.475e+01 7.535e-01 85.933 < 2e-16 ***
## whoData$TotExp 6.297e-05 7.795e-06 8.079 7.71e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared: 0.2577, Adjusted R-squared: 0.2537
## F-statistic: 65.26 on 1 and 188 DF, p-value: 7.714e-14
whoData$AdjLifeExp = whoData$LifeExp ^ 4.6
whoData$AdjTotExp = whoData$TotExp ^ 0.06
lfunction <- lm(whoData$AdjLifeExp ~ whoData$AdjTotExp)
lfunction
##
## Call:
## lm(formula = whoData$AdjLifeExp ~ whoData$AdjTotExp)
##
## Coefficients:
## (Intercept) whoData$AdjTotExp
## -736527909 620060216
summary(lfunction)
##
## Call:
## lm(formula = whoData$AdjLifeExp ~ whoData$AdjTotExp)
##
## Residuals:
## Min 1Q Median 3Q Max
## -308616089 -53978977 13697187 59139231 211951764
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -736527910 46817945 -15.73 <2e-16 ***
## whoData$AdjTotExp 620060216 27518940 22.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared: 0.7298, Adjusted R-squared: 0.7283
## F-statistic: 507.7 on 1 and 188 DF, p-value: < 2.2e-16
The second model performs better with a larger R-squared value and a lower p-value
Life expectancy (raised to the 4.6 power) when Adjusted Total Expenditure (raised to the 0.06 power) = 1.5
Ans = -736527909 + 1.5*620060216
Ans
## [1] 193562415
Life expectancy (raised to the 4.6 power) when Adjusted Total Expenditure (raised to the 0.06 power) = 2.5
Ans = -736527909 + 2.5*620060216
Ans
## [1] 813622631
whoData$Extra = whoData$PropMD + whoData$TotExp
lfunction <- lm(LifeExp ~ PropMD + TotExp + Extra, data=whoData)
lfunction
##
## Call:
## lm(formula = LifeExp ~ PropMD + TotExp + Extra, data = whoData)
##
## Coefficients:
## (Intercept) PropMD TotExp Extra
## 6.397e+01 6.508e+02 5.378e-05 NA
summary(lfunction)
##
## Call:
## lm(formula = LifeExp ~ PropMD + TotExp + Extra, data = whoData)
##
## Residuals:
## Min 1Q Median 3Q Max
## -23.996 -4.880 3.042 6.958 13.415
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.397e+01 7.706e-01 83.012 < 2e-16 ***
## PropMD 6.508e+02 1.946e+02 3.344 0.000998 ***
## TotExp 5.378e-05 8.074e-06 6.661 2.95e-10 ***
## Extra NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.127 on 187 degrees of freedom
## Multiple R-squared: 0.2996, Adjusted R-squared: 0.2921
## F-statistic: 39.99 on 2 and 187 DF, p-value: 3.479e-15
This model does not perform well
LifeExp = 63.97 + 650.8*0.3 + 0.00005378*14
LifeExp
## [1] 259.2108
The result is unrealistic. Human beings do not live for that many years