Using R, provide the solution for any exercise in either Chapter 4 or Chapter 7 of the calculus textbook. If you are unsure of your solution, post your concerns.
In Exercises 8 - 11, use Newton’s Method to approximate all roots of the given functions accurate to 3 places after the decimal. If an interval is given, find only the roots that lie in that interval. Use technology to obtain good initial approximations.
Using Newton’s method
\(f(x) = 0\)
\(f(x) = x^3 + 5x^2 - x - 1 = 0\)
First derivative of the equation is
\(f'(x) = 3x^2 + 10x - 1\)
Approximation \(X_{n+1} = X_n - \frac{f(X_n)}{f'(X_n)}\)
library(ggplot2)
library(knitr)
xvalues=c()
xresult=c()
x = -2
loop = T
i = 1
while (loop)
{
eq <- (x^3) + 5*(x)^2 - x - 1
eqf <- 3*(x^2) + 10*(x) - 1
result <- x - (eq / eqf)
xvalues[i] <- x
xresult[i] <- result
if (round(x,3) == round(result,3))
{
loop = F
}
else
{
if (x>0)
{
x = result
}
else
{
x <- x + 1
}
}
i<- i+1
}
output <- data.frame(round(xvalues,3), round(xresult,3))
colnames(output)<- c("x","f(x)")
kable(output, align='l', caption = "Output values for x and f(x)")
| x | f(x) |
|---|---|
| -2.000 | -0.556 |
| -1.000 | -0.500 |
| 0.000 | -1.000 |
| 1.000 | 0.667 |
| 0.667 | 0.545 |
| 0.545 | 0.526 |
| 0.526 | 0.525 |
| 0.525 | 0.525 |
After running eight iterations of Newton’s Method, \(X_8\) is accurate to more than just 3 decimal places.
qplot(xvalues,xresult, geom='smooth', span =0.5) + labs(x="x", y="f(x)", title = "x vs. f(x)")