Fernando Melo
november 19, 2017
The objective of this presentation is to give information about what a user will need to get started using the shiny application aplication developed for the final project of the Data Product course.
The Titanic Prediction application uses the Kaggle train.csv dataset to train a decision tree model and predicts if a new passenger will survive, based on the selections made by application user.
To get the Titanic Prediction for a new passenger:
1- select the passenger ticket Class (1, 2 or 3).
2- Select the passenger sex (male/female).
3- select the passenger age using the slider (1 to 80).
The aplication will display the user selections and the prediction.
Prediction = 0 : No, passenger didn't survived.
Prediction = 1 : Yes, passenger survived.
This is the code for the server calculations:
require(rpart)
titanicTrain <- read.csv("train.csv",header=TRUE)
titanicTrain$Pclass <- as.factor(titanicTrain$Pclass)
model2 <- rpart(Survived ~ Pclass + Sex + Age,data=titanicTrain,method="class")
model2
n= 891
node), split, n, loss, yval, (yprob)
* denotes terminal node
1) root 891 342 0 (0.61616162 0.38383838)
2) Sex=male 577 109 0 (0.81109185 0.18890815)
4) Age>=6.5 553 93 0 (0.83182640 0.16817360) *
5) Age< 6.5 24 8 1 (0.33333333 0.66666667) *
3) Sex=female 314 81 1 (0.25796178 0.74203822)
6) Pclass=3 144 72 0 (0.50000000 0.50000000)
12) Age>=38.5 12 1 0 (0.91666667 0.08333333) *
13) Age< 38.5 132 61 1 (0.46212121 0.53787879)
26) Age>=5.5 117 57 1 (0.48717949 0.51282051)
52) Age< 12 8 0 0 (1.00000000 0.00000000) *
53) Age>=12 109 49 1 (0.44954128 0.55045872) *
27) Age< 5.5 15 4 1 (0.26666667 0.73333333) *
7) Pclass=1,2 170 9 1 (0.05294118 0.94705882) *