library(forcats)
library(useful)
## Loading required package: ggplot2
library(glmnetUtils)
library(glmnet)
## Loading required package: Matrix
## Loading required package: foreach
## Loaded glmnet 2.0-13
## 
## Attaching package: 'glmnet'
## The following objects are masked from 'package:glmnetUtils':
## 
##     cv.glmnet, glmnet
rm(list = ls())

df <- readRDS('./data/subset_recode.RDS')
source('./analysis/chendaniely/model_utils.R')

1 Reference Values

# lapply(lapply(df, levels), '[[', 1)
# response variable levels
levels(df$Q13)
## [1] "Yes, every year" "Yes, some years" "No, never"

2 Subset response variables

never_every <- df[df$Q13 %in% c('Yes, every year', 'No, never'), ]
never_every$Q13 <- droplevels(never_every$Q13)
never_every$Q13 <- fct_relevel(never_every$Q13, 'No, never', after = 0L)
table(never_every$Q13, useNA = 'always')
## 
##       No, never Yes, every year            <NA> 
##             819             908               0
levels(never_every$Q13)
## [1] "No, never"       "Yes, every year"
testthat::expect_equal(levels(never_every$Q13)[1], "No, never")
never_some <- df[df$Q13 %in% c('Yes, some years', 'No, never'), ]
never_some$Q13 <- droplevels(never_some$Q13)
never_some$Q13 <- fct_relevel(never_some$Q13, 'No, never', after = 0L)
table(never_some$Q13, useNA = 'always')
## 
##       No, never Yes, some years            <NA> 
##             819             423               0
levels(never_some$Q13)
## [1] "No, never"       "Yes, some years"
testthat::expect_equal(levels(never_some$Q13)[1], "No, never")
never_someevery <- df[df$Q13 %in% c('Yes, every year', 'Yes, some years', 'No, never'), ]
never_someevery$Q13_nv_se <- as.character(never_someevery$Q13)

never_someevery$Q13_nv_se <- sapply(X = never_someevery$Q13_nv_se, FUN = recode_never_someevery)
never_someevery$Q13_nv_se <- as.factor(never_someevery$Q13_nv_se)
never_someevery$Q13_nv_se <- fct_relevel(never_someevery$Q13_nv_se, 'No, never', after = 0L)
table(never_someevery$Q13_nv_se, never_someevery$Q13,useNA = 'always')
##                          
##                           Yes, every year Yes, some years No, never <NA>
##   No, never                             0               0       819    0
##   Yes, some or every year             908             423         0    0
##   <NA>                                  0               0         0    0
levels(never_someevery$Q13_nv_se)
## [1] "No, never"               "Yes, some or every year"
testthat::expect_equal(levels(never_someevery$Q13_nv_se)[1], "No, never")

never_someevery$Q13 <- never_someevery$Q13_nv_se
testthat::expect_equal(levels(never_someevery$Q13)[1], "No, never")

3 Save out data

save(never_every, never_some, never_someevery, file = 'data/model_dataframes.RData')

4 LASSO

Use LASSO to fit a model to use as a variable selection method

4.1 Never Every

x  <- build.x(Q13 ~ PPGENDER + ppagecat + PPEDUCAT + PPETHM + income + marital +
               PPMSACAT + PPREG4 + work - 1,
             data = never_every, contrasts = FALSE)
y <- build.y(Q13 ~ PPGENDER + ppagecat + PPEDUCAT + PPETHM + income + marital +
               PPMSACAT + PPREG4 + work,
             data = never_every)

never_every_cv <- cv.glmnet(x = x, y = y, family = "binomial", nfolds = 10, weights = never_every$weight)
plot(never_every_cv)

# coef(never_every_cv, s = 'lambda.min')

4.2 Never Some

x  <- build.x(Q13 ~ PPGENDER + ppagecat + PPEDUCAT + PPETHM + income + marital +
               PPMSACAT + PPREG4 + work - 1,
             data = never_some, contrasts = FALSE)
y <- build.y(Q13 ~ PPGENDER + ppagecat + PPEDUCAT + PPETHM + income + marital +
               PPMSACAT + PPREG4 + work,
             data = never_some)

never_some_cv <- cv.glmnet(x = x, y = y, family = "binomial", nfolds = 10, weights = never_some$weight)
plot(never_some_cv)

# coef(never_some_cv, s = 'lambda.min')

4.3 Never SomeEvery

x  <- build.x(Q13 ~ PPGENDER + ppagecat + PPEDUCAT + PPETHM + income + marital +
               PPMSACAT + PPREG4 + work - 1,
             data = never_someevery, contrasts = FALSE)
y <- build.y(Q13 ~ PPGENDER + ppagecat + PPEDUCAT + PPETHM + income + marital +
               PPMSACAT + PPREG4 + work,
             data = never_someevery)

never_someevery_cv <- cv.glmnet(x = x, y = y, family = "binomial", nfolds = 10, weights = never_someevery$weight)
plot(never_someevery_cv)

# coef(never_someevery_cv, s = 'lambda.min')

4.4 Coeff Tables

coef_cv <- cbind(coef(never_every_cv, s = 'lambda.min'),
                 coef(never_some_cv, s = 'lambda.min'),
                 coef(never_someevery_cv, s = 'lambda.min'),
                 coef(never_every_cv, s = 'lambda.1se'),
                 coef(never_some_cv, s = 'lambda.1se'),
                 coef(never_someevery_cv, s = 'lambda.1se')
)

coef_cv <- as.data.frame(as.matrix(coef_cv))

coef_cv <- round(coef_cv, digits = 4)
coef_cv[coef_cv == 0] <- '.'

colnames(coef_cv) <- c('ne_min', 'ns_min', 'nse_min',
                    'ne_1se', 'ns_1se', 'nse_1se')

knitr::kable(coef_cv, digits = 2)
ne_min ns_min nse_min ne_1se ns_1se nse_1se
(Intercept) -0.2854 -0.604 0.2132 -0.277 -0.6188 0.3039
PPGENDERFemale 4e-04 0.0574 0.0629 . . .
PPGENDERMale . . -1e-04 . . .
ppagecat18-24 -0.1632 0.2377 . -0.0068 . .
ppagecat25-34 -0.4156 . -0.1966 -0.2977 . -0.096
ppagecat35-44 -0.186 . -0.1701 -0.0681 . -0.0626
ppagecat45-54 . . . . . .
ppagecat55-64 0.3827 -0.2168 0.1284 0.2861 . .
ppagecat65-74 0.7812 . 0.5041 0.6732 . 0.313
ppagecat75+ 1.278 -0.1683 0.8933 1.0712 . 0.5469
PPEDUCATLess than high school -0.0339 -0.2665 -0.1533 . . .
PPEDUCATHigh school . -0.6302 -0.1821 . -0.1718 -0.011
PPEDUCATSome college . . . . . .
PPEDUCATBachelor_s degree or higher 0.4469 0.1004 0.3128 0.3703 . 0.3092
PPETHMWhite, Non-Hispanic . . . . . .
PPETHMBlack, Non-Hispanic -0.1732 -0.0497 -0.15 -0.0468 . -0.0058
PPETHMHispanic . . . . . .
PPETHMOther, Non-Hispanic . 0.0815 0.0024 . . .
PPETHM2+ Races, Non-Hispanic -0.1913 -0.3549 -0.4103 . . .
incomeunder $10k -0.3039 -0.0835 -0.3229 -0.0962 . -0.1399
income$10k to $25k -0.3861 -0.2455 -0.373 -0.2088 . -0.1975
income$25k to $50k -0.0933 . -0.1005 . . .
income$50k to $75k . . . . . .
income$75k to $100k . . . . . .
income$100k to $150k 0.2184 0.0667 0.1687 0.1369 . 0.0808
incomeover $150k 0.4586 . 0.3203 0.3367 . 0.1684
maritalsingle -0.1839 -0.2617 -0.2506 -0.191 . -0.1912
maritalpartnered . . . . . 4e-04
PPMSACATMetro . 0.2311 0.1203 . . .
PPMSACATNon-Metro . -0.0033 . . . .
PPREG4Midwest -0.0221 . . . . .
PPREG4Northeast . . . . . .
PPREG4South . -0.1469 -0.0164 . . .
PPREG4West 0.036 0.3971 0.2439 . 0.0536 0.113
workunemployed 0.225 . 0.2038 0.1243 . 0.0738
workemployed -0.0283 . . -0.0189 . .

Using the lambda1se values we select the following demographic variables:

ppagecat PPEDUCAT PPETHM income marital work

5 Bootstrap LASSO

total <- 100

pb <- txtProgressBar(min = 0, max = total, style = 3)
## 
  |                                                                       
  |                                                                 |   0%
all_kept_variables <- list()

for (i in 1:total) {
  boot_never_every <- sample(x = 1:nrow(never_every), size = nrow(never_every), replace = TRUE)
  boot_never_every <- never_every[boot_never_every, ]
  
  boot_never_some <- sample(x = 1:nrow(never_some), size = nrow(never_some), replace = TRUE)
  boot_never_some <- never_some[boot_never_some, ]
  
  boot_never_someevery <- sample(x = 1:nrow(never_someevery), size = nrow(never_someevery), replace = TRUE)
  boot_never_someevery <- never_someevery[boot_never_someevery, ]
  
  
  x  <- build.x(Q13 ~ PPGENDER + ppagecat + PPEDUCAT + PPETHM + income + marital +
                  PPMSACAT + PPREG4 + work - 1,
                data = boot_never_every, contrasts = FALSE)
  y <- build.y(Q13 ~ PPGENDER + ppagecat + PPEDUCAT + PPETHM + income + marital +
                 PPMSACAT + PPREG4 + work,
               data = boot_never_every)
  boot_never_every_cv <- cv.glmnet(x = x, y = y, family = "binomial", nfolds = 10, weights = boot_never_every$weight)
  
  x  <- build.x(Q13 ~ PPGENDER + ppagecat + PPEDUCAT + PPETHM + income + marital +
                  PPMSACAT + PPREG4 + work - 1,
                data = boot_never_some, contrasts = FALSE)
  y <- build.y(Q13 ~ PPGENDER + ppagecat + PPEDUCAT + PPETHM + income + marital +
                 PPMSACAT + PPREG4 + work,
               data = boot_never_some)
  boot_never_some_cv <- cv.glmnet(x = x, y = y, family = "binomial", nfolds = 10, weights = boot_never_some$weight)
  
  x  <- build.x(Q13 ~ PPGENDER + ppagecat + PPEDUCAT + PPETHM + income + marital +
                  PPMSACAT + PPREG4 + work - 1,
                data = boot_never_someevery, contrasts = FALSE)
  y <- build.y(Q13 ~ PPGENDER + ppagecat + PPEDUCAT + PPETHM + income + marital +
                 PPMSACAT + PPREG4 + work,
               data = boot_never_someevery)
  boot_never_someevery_cv <- cv.glmnet(x = x, y = y, family = "binomial", nfolds = 10, weights = boot_never_someevery$weight)
  
  coef_cv <- cbind(coef(boot_never_every_cv, s = 'lambda.min'),
                   coef(boot_never_some_cv, s = 'lambda.min'),
                   coef(boot_never_someevery_cv, s = 'lambda.min'),
                   coef(boot_never_every_cv, s = 'lambda.1se'),
                   coef(boot_never_some_cv, s = 'lambda.1se'),
                   coef(boot_never_someevery_cv, s = 'lambda.1se')
  )
  
  coef_cv <- as.data.frame(as.matrix(coef_cv))
  
  coef_cv <- round(coef_cv, digits = 4)
  coef_cv[coef_cv == 0] <- '.'
  
  colnames(coef_cv) <- c('ne_min', 'ns_min', 'nse_min',
                         'ne_1se', 'ns_1se', 'nse_1se')
  
  kept_variable <- coef_cv > 0
  all_kept_variables[[i]] <- kept_variable
  
  setTxtProgressBar(pb, i)
}
## 
  |                                                                       
  |=                                                                |   1%
  |                                                                       
  |=                                                                |   2%
  |                                                                       
  |==                                                               |   3%
  |                                                                       
  |===                                                              |   4%
  |                                                                       
  |===                                                              |   5%
  |                                                                       
  |====                                                             |   6%
  |                                                                       
  |=====                                                            |   7%
  |                                                                       
  |=====                                                            |   8%
  |                                                                       
  |======                                                           |   9%
  |                                                                       
  |======                                                           |  10%
  |                                                                       
  |=======                                                          |  11%
  |                                                                       
  |========                                                         |  12%
  |                                                                       
  |========                                                         |  13%
  |                                                                       
  |=========                                                        |  14%
  |                                                                       
  |==========                                                       |  15%
  |                                                                       
  |==========                                                       |  16%
  |                                                                       
  |===========                                                      |  17%
  |                                                                       
  |============                                                     |  18%
  |                                                                       
  |============                                                     |  19%
  |                                                                       
  |=============                                                    |  20%
  |                                                                       
  |==============                                                   |  21%
  |                                                                       
  |==============                                                   |  22%
  |                                                                       
  |===============                                                  |  23%
  |                                                                       
  |================                                                 |  24%
  |                                                                       
  |================                                                 |  25%
  |                                                                       
  |=================                                                |  26%
  |                                                                       
  |==================                                               |  27%
  |                                                                       
  |==================                                               |  28%
  |                                                                       
  |===================                                              |  29%
  |                                                                       
  |====================                                             |  30%
  |                                                                       
  |====================                                             |  31%
  |                                                                       
  |=====================                                            |  32%
  |                                                                       
  |=====================                                            |  33%
  |                                                                       
  |======================                                           |  34%
  |                                                                       
  |=======================                                          |  35%
  |                                                                       
  |=======================                                          |  36%
  |                                                                       
  |========================                                         |  37%
  |                                                                       
  |=========================                                        |  38%
  |                                                                       
  |=========================                                        |  39%
  |                                                                       
  |==========================                                       |  40%
  |                                                                       
  |===========================                                      |  41%
  |                                                                       
  |===========================                                      |  42%
  |                                                                       
  |============================                                     |  43%
  |                                                                       
  |=============================                                    |  44%
  |                                                                       
  |=============================                                    |  45%
  |                                                                       
  |==============================                                   |  46%
  |                                                                       
  |===============================                                  |  47%
  |                                                                       
  |===============================                                  |  48%
  |                                                                       
  |================================                                 |  49%
  |                                                                       
  |================================                                 |  50%
  |                                                                       
  |=================================                                |  51%
  |                                                                       
  |==================================                               |  52%
  |                                                                       
  |==================================                               |  53%
  |                                                                       
  |===================================                              |  54%
  |                                                                       
  |====================================                             |  55%
  |                                                                       
  |====================================                             |  56%
  |                                                                       
  |=====================================                            |  57%
  |                                                                       
  |======================================                           |  58%
  |                                                                       
  |======================================                           |  59%
  |                                                                       
  |=======================================                          |  60%
  |                                                                       
  |========================================                         |  61%
  |                                                                       
  |========================================                         |  62%
  |                                                                       
  |=========================================                        |  63%
  |                                                                       
  |==========================================                       |  64%
  |                                                                       
  |==========================================                       |  65%
  |                                                                       
  |===========================================                      |  66%
  |                                                                       
  |============================================                     |  67%
  |                                                                       
  |============================================                     |  68%
  |                                                                       
  |=============================================                    |  69%
  |                                                                       
  |==============================================                   |  70%
  |                                                                       
  |==============================================                   |  71%
  |                                                                       
  |===============================================                  |  72%
  |                                                                       
  |===============================================                  |  73%
  |                                                                       
  |================================================                 |  74%
  |                                                                       
  |=================================================                |  75%
  |                                                                       
  |=================================================                |  76%
  |                                                                       
  |==================================================               |  77%
  |                                                                       
  |===================================================              |  78%
  |                                                                       
  |===================================================              |  79%
  |                                                                       
  |====================================================             |  80%
  |                                                                       
  |=====================================================            |  81%
  |                                                                       
  |=====================================================            |  82%
  |                                                                       
  |======================================================           |  83%
  |                                                                       
  |=======================================================          |  84%
  |                                                                       
  |=======================================================          |  85%
  |                                                                       
  |========================================================         |  86%
  |                                                                       
  |=========================================================        |  87%
  |                                                                       
  |=========================================================        |  88%
  |                                                                       
  |==========================================================       |  89%
  |                                                                       
  |==========================================================       |  90%
  |                                                                       
  |===========================================================      |  91%
  |                                                                       
  |============================================================     |  92%
  |                                                                       
  |============================================================     |  93%
  |                                                                       
  |=============================================================    |  94%
  |                                                                       
  |==============================================================   |  95%
  |                                                                       
  |==============================================================   |  96%
  |                                                                       
  |===============================================================  |  97%
  |                                                                       
  |================================================================ |  98%
  |                                                                       
  |================================================================ |  99%
  |                                                                       
  |=================================================================| 100%

5.1 Looking at results

5.1.1 Raw Counts

var_counts <- Reduce("+", all_kept_variables)
var_counts
##                                     ne_min ns_min nse_min ne_1se ns_1se
## (Intercept)                              2      0      85      3      0
## PPGENDERFemale                          47     69      73     14     22
## PPGENDERMale                             0      0       0      0      0
## ppagecat18-24                            0     79      12      0     35
## ppagecat25-34                            0     50       0      0      5
## ppagecat35-44                            0     11       1      0      0
## ppagecat45-54                            0     19       6      0      3
## ppagecat55-64                          100      0      61     91      0
## ppagecat65-74                          100     24      99    100      1
## ppagecat75+                            100      0     100    100      0
## PPEDUCATLess than high school            6      1       1      0      0
## PPEDUCATHigh school                      0      0       0      0      0
## PPEDUCATSome college                     0     16       1      0      4
## PPEDUCATBachelor_s degree or higher     99     78      98     99     70
## PPETHMWhite, Non-Hispanic               49     11      34     35      0
## PPETHMBlack, Non-Hispanic                1      6       4      0      0
## PPETHMHispanic                          22     42      30      1      9
## PPETHMOther, Non-Hispanic               35     60      50      8     29
## PPETHM2+ Races, Non-Hispanic             0      0       0      0      0
## incomeunder $10k                         2      6       1      0      0
## income$10k to $25k                       0      0       0      0      0
## income$25k to $50k                       1      6       0      0      0
## income$50k to $75k                      26     23      25      1      6
## income$75k to $100k                     29     54      44     10     12
## income$100k to $150k                    90     62      91     69     30
## incomeover $150k                        99     40      95     90     11
## maritalsingle                            0      0       0      0      0
## maritalpartnered                        11     10       9     10      7
## PPMSACATMetro                           37     94      72     14     51
## PPMSACATNon-Metro                        2      0       0      0      0
## PPREG4Midwest                            9     26       5      0      1
## PPREG4Northeast                         28     13      21      5      0
## PPREG4South                              9      0       0      0      0
## PPREG4West                              57     96      98     21     81
## workunemployed                          97     42      98     81      1
## workemployed                             0      0       0      0      0
##                                     nse_1se
## (Intercept)                             100
## PPGENDERFemale                           23
## PPGENDERMale                              0
## ppagecat18-24                             3
## ppagecat25-34                             0
## ppagecat35-44                             0
## ppagecat45-54                             0
## ppagecat55-64                            25
## ppagecat65-74                            99
## ppagecat75+                             100
## PPEDUCATLess than high school             0
## PPEDUCATHigh school                       0
## PPEDUCATSome college                      0
## PPEDUCATBachelor_s degree or higher      99
## PPETHMWhite, Non-Hispanic                17
## PPETHMBlack, Non-Hispanic                 0
## PPETHMHispanic                            4
## PPETHMOther, Non-Hispanic                18
## PPETHM2+ Races, Non-Hispanic              0
## incomeunder $10k                          0
## income$10k to $25k                        0
## income$25k to $50k                        0
## income$50k to $75k                        2
## income$75k to $100k                      13
## income$100k to $150k                     59
## incomeover $150k                         77
## maritalsingle                             0
## maritalpartnered                          9
## PPMSACATMetro                            38
## PPMSACATNon-Metro                         0
## PPREG4Midwest                             0
## PPREG4Northeast                           1
## PPREG4South                               0
## PPREG4West                               73
## workunemployed                           75
## workemployed                              0

5.1.2 Counts > 50

var_counts > 50
##                                     ne_min ns_min nse_min ne_1se ns_1se
## (Intercept)                          FALSE  FALSE    TRUE  FALSE  FALSE
## PPGENDERFemale                       FALSE   TRUE    TRUE  FALSE  FALSE
## PPGENDERMale                         FALSE  FALSE   FALSE  FALSE  FALSE
## ppagecat18-24                        FALSE   TRUE   FALSE  FALSE  FALSE
## ppagecat25-34                        FALSE  FALSE   FALSE  FALSE  FALSE
## ppagecat35-44                        FALSE  FALSE   FALSE  FALSE  FALSE
## ppagecat45-54                        FALSE  FALSE   FALSE  FALSE  FALSE
## ppagecat55-64                         TRUE  FALSE    TRUE   TRUE  FALSE
## ppagecat65-74                         TRUE  FALSE    TRUE   TRUE  FALSE
## ppagecat75+                           TRUE  FALSE    TRUE   TRUE  FALSE
## PPEDUCATLess than high school        FALSE  FALSE   FALSE  FALSE  FALSE
## PPEDUCATHigh school                  FALSE  FALSE   FALSE  FALSE  FALSE
## PPEDUCATSome college                 FALSE  FALSE   FALSE  FALSE  FALSE
## PPEDUCATBachelor_s degree or higher   TRUE   TRUE    TRUE   TRUE   TRUE
## PPETHMWhite, Non-Hispanic            FALSE  FALSE   FALSE  FALSE  FALSE
## PPETHMBlack, Non-Hispanic            FALSE  FALSE   FALSE  FALSE  FALSE
## PPETHMHispanic                       FALSE  FALSE   FALSE  FALSE  FALSE
## PPETHMOther, Non-Hispanic            FALSE   TRUE   FALSE  FALSE  FALSE
## PPETHM2+ Races, Non-Hispanic         FALSE  FALSE   FALSE  FALSE  FALSE
## incomeunder $10k                     FALSE  FALSE   FALSE  FALSE  FALSE
## income$10k to $25k                   FALSE  FALSE   FALSE  FALSE  FALSE
## income$25k to $50k                   FALSE  FALSE   FALSE  FALSE  FALSE
## income$50k to $75k                   FALSE  FALSE   FALSE  FALSE  FALSE
## income$75k to $100k                  FALSE   TRUE   FALSE  FALSE  FALSE
## income$100k to $150k                  TRUE   TRUE    TRUE   TRUE  FALSE
## incomeover $150k                      TRUE  FALSE    TRUE   TRUE  FALSE
## maritalsingle                        FALSE  FALSE   FALSE  FALSE  FALSE
## maritalpartnered                     FALSE  FALSE   FALSE  FALSE  FALSE
## PPMSACATMetro                        FALSE   TRUE    TRUE  FALSE   TRUE
## PPMSACATNon-Metro                    FALSE  FALSE   FALSE  FALSE  FALSE
## PPREG4Midwest                        FALSE  FALSE   FALSE  FALSE  FALSE
## PPREG4Northeast                      FALSE  FALSE   FALSE  FALSE  FALSE
## PPREG4South                          FALSE  FALSE   FALSE  FALSE  FALSE
## PPREG4West                            TRUE   TRUE    TRUE  FALSE   TRUE
## workunemployed                        TRUE  FALSE    TRUE   TRUE  FALSE
## workemployed                         FALSE  FALSE   FALSE  FALSE  FALSE
##                                     nse_1se
## (Intercept)                            TRUE
## PPGENDERFemale                        FALSE
## PPGENDERMale                          FALSE
## ppagecat18-24                         FALSE
## ppagecat25-34                         FALSE
## ppagecat35-44                         FALSE
## ppagecat45-54                         FALSE
## ppagecat55-64                         FALSE
## ppagecat65-74                          TRUE
## ppagecat75+                            TRUE
## PPEDUCATLess than high school         FALSE
## PPEDUCATHigh school                   FALSE
## PPEDUCATSome college                  FALSE
## PPEDUCATBachelor_s degree or higher    TRUE
## PPETHMWhite, Non-Hispanic             FALSE
## PPETHMBlack, Non-Hispanic             FALSE
## PPETHMHispanic                        FALSE
## PPETHMOther, Non-Hispanic             FALSE
## PPETHM2+ Races, Non-Hispanic          FALSE
## incomeunder $10k                      FALSE
## income$10k to $25k                    FALSE
## income$25k to $50k                    FALSE
## income$50k to $75k                    FALSE
## income$75k to $100k                   FALSE
## income$100k to $150k                   TRUE
## incomeover $150k                       TRUE
## maritalsingle                         FALSE
## maritalpartnered                      FALSE
## PPMSACATMetro                         FALSE
## PPMSACATNon-Metro                     FALSE
## PPREG4Midwest                         FALSE
## PPREG4Northeast                       FALSE
## PPREG4South                           FALSE
## PPREG4West                             TRUE
## workunemployed                         TRUE
## workemployed                          FALSE

5.1.3 Proportion

var_prop <- var_counts / total
var_prop
##                                     ne_min ns_min nse_min ne_1se ns_1se
## (Intercept)                           0.02   0.00    0.85   0.03   0.00
## PPGENDERFemale                        0.47   0.69    0.73   0.14   0.22
## PPGENDERMale                          0.00   0.00    0.00   0.00   0.00
## ppagecat18-24                         0.00   0.79    0.12   0.00   0.35
## ppagecat25-34                         0.00   0.50    0.00   0.00   0.05
## ppagecat35-44                         0.00   0.11    0.01   0.00   0.00
## ppagecat45-54                         0.00   0.19    0.06   0.00   0.03
## ppagecat55-64                         1.00   0.00    0.61   0.91   0.00
## ppagecat65-74                         1.00   0.24    0.99   1.00   0.01
## ppagecat75+                           1.00   0.00    1.00   1.00   0.00
## PPEDUCATLess than high school         0.06   0.01    0.01   0.00   0.00
## PPEDUCATHigh school                   0.00   0.00    0.00   0.00   0.00
## PPEDUCATSome college                  0.00   0.16    0.01   0.00   0.04
## PPEDUCATBachelor_s degree or higher   0.99   0.78    0.98   0.99   0.70
## PPETHMWhite, Non-Hispanic             0.49   0.11    0.34   0.35   0.00
## PPETHMBlack, Non-Hispanic             0.01   0.06    0.04   0.00   0.00
## PPETHMHispanic                        0.22   0.42    0.30   0.01   0.09
## PPETHMOther, Non-Hispanic             0.35   0.60    0.50   0.08   0.29
## PPETHM2+ Races, Non-Hispanic          0.00   0.00    0.00   0.00   0.00
## incomeunder $10k                      0.02   0.06    0.01   0.00   0.00
## income$10k to $25k                    0.00   0.00    0.00   0.00   0.00
## income$25k to $50k                    0.01   0.06    0.00   0.00   0.00
## income$50k to $75k                    0.26   0.23    0.25   0.01   0.06
## income$75k to $100k                   0.29   0.54    0.44   0.10   0.12
## income$100k to $150k                  0.90   0.62    0.91   0.69   0.30
## incomeover $150k                      0.99   0.40    0.95   0.90   0.11
## maritalsingle                         0.00   0.00    0.00   0.00   0.00
## maritalpartnered                      0.11   0.10    0.09   0.10   0.07
## PPMSACATMetro                         0.37   0.94    0.72   0.14   0.51
## PPMSACATNon-Metro                     0.02   0.00    0.00   0.00   0.00
## PPREG4Midwest                         0.09   0.26    0.05   0.00   0.01
## PPREG4Northeast                       0.28   0.13    0.21   0.05   0.00
## PPREG4South                           0.09   0.00    0.00   0.00   0.00
## PPREG4West                            0.57   0.96    0.98   0.21   0.81
## workunemployed                        0.97   0.42    0.98   0.81   0.01
## workemployed                          0.00   0.00    0.00   0.00   0.00
##                                     nse_1se
## (Intercept)                            1.00
## PPGENDERFemale                         0.23
## PPGENDERMale                           0.00
## ppagecat18-24                          0.03
## ppagecat25-34                          0.00
## ppagecat35-44                          0.00
## ppagecat45-54                          0.00
## ppagecat55-64                          0.25
## ppagecat65-74                          0.99
## ppagecat75+                            1.00
## PPEDUCATLess than high school          0.00
## PPEDUCATHigh school                    0.00
## PPEDUCATSome college                   0.00
## PPEDUCATBachelor_s degree or higher    0.99
## PPETHMWhite, Non-Hispanic              0.17
## PPETHMBlack, Non-Hispanic              0.00
## PPETHMHispanic                         0.04
## PPETHMOther, Non-Hispanic              0.18
## PPETHM2+ Races, Non-Hispanic           0.00
## incomeunder $10k                       0.00
## income$10k to $25k                     0.00
## income$25k to $50k                     0.00
## income$50k to $75k                     0.02
## income$75k to $100k                    0.13
## income$100k to $150k                   0.59
## incomeover $150k                       0.77
## maritalsingle                          0.00
## maritalpartnered                       0.09
## PPMSACATMetro                          0.38
## PPMSACATNon-Metro                      0.00
## PPREG4Midwest                          0.00
## PPREG4Northeast                        0.01
## PPREG4South                            0.00
## PPREG4West                             0.73
## workunemployed                         0.75
## workemployed                           0.00

5.1.4 Conclusion

drop:

  • PPGENDER
  • PPETHM
  • PPMSACAT
  • marital

keep:

  • ppagecat
  • PPEDUCAT
  • income
  • PPREG4
  • work