Q4

dta <-read.table("alcohol_use.txt",h=T)
str(dta)
## 'data.frame':    246 obs. of  8 variables:
##  $ sid   : int  1 1 1 2 2 2 3 3 3 4 ...
##  $ coa   : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ sex   : int  0 0 0 1 1 1 1 1 1 1 ...
##  $ age14 : int  0 1 2 0 1 2 0 1 2 0 ...
##  $ alcuse: num  1.73 2 2 0 0 ...
##  $ peer  : num  1.265 1.265 1.265 0.894 0.894 ...
##  $ cpeer : num  0.247 0.247 0.247 -0.124 -0.124 ...
##  $ ccoa  : num  0.549 0.549 0.549 0.549 0.549 0.549 0.549 0.549 0.549 0.549 ...
require(lme4)
## Loading required package: lme4
## Loading required package: Matrix
summary(m1<- lmer(data=dta, alcuse ~ coa + peer*age14 +(1|sid)))
## Linear mixed model fit by REML ['lmerMod']
## Formula: alcuse ~ coa + peer * age14 + (1 | sid)
##    Data: dta
## 
## REML criterion at convergence: 621.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.30588 -0.66394 -0.05233  0.55906  2.60999 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  sid      (Intercept) 0.3377   0.5811  
##  Residual             0.4823   0.6945  
## Number of obs: 246, groups:  sid, 82
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept) -0.31177    0.17225  -1.810
## coa          0.56513    0.15878   3.559
## peer         0.69586    0.13219   5.264
## age14        0.42469    0.09346   4.544
## peer:age14  -0.15138    0.07481  -2.024
## 
## Correlation of Fixed Effects:
##            (Intr) coa    peer   age14 
## coa        -0.312                     
## peer       -0.725 -0.134              
## age14      -0.543  0.000  0.461       
## peer:age14  0.442  0.000 -0.566 -0.814
summary(m2 <- lmer(data=dta,alcuse ~ coa + peer*age14 + ( 1 + age14| sid )))
## Linear mixed model fit by REML ['lmerMod']
## Formula: alcuse ~ coa + peer * age14 + (1 + age14 | sid)
##    Data: dta
## 
## REML criterion at convergence: 603.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.59995 -0.40432 -0.07739  0.44372  2.27436 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  sid      (Intercept) 0.2595   0.5094        
##           age14       0.1469   0.3832   -0.05
##  Residual             0.3373   0.5808        
## Number of obs: 246, groups:  sid, 82
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept) -0.31382    0.14871  -2.110
## coa          0.57120    0.14898   3.834
## peer         0.69518    0.11322   6.140
## age14        0.42469    0.10690   3.973
## peer:age14  -0.15138    0.08556  -1.769
## 
## Correlation of Fixed Effects:
##            (Intr) coa    peer   age14 
## coa        -0.339                     
## peer       -0.708 -0.146              
## age14      -0.408  0.000  0.350       
## peer:age14  0.332  0.000 -0.429 -0.814
AIC(m1, m2)
##    df      AIC
## m1  7 635.6048
## m2  9 621.6977

Q5

dta<-as.data.frame(sleepstudy)
str(dta)
## 'data.frame':    180 obs. of  3 variables:
##  $ Reaction: num  250 259 251 321 357 ...
##  $ Days    : num  0 1 2 3 4 5 6 7 8 9 ...
##  $ Subject : Factor w/ 18 levels "308","309","310",..: 1 1 1 1 1 1 1 1 1 1 ...
#plot look over the data of sub
require(ggplot2)
## Loading required package: ggplot2
ggplot(dta, aes(Days, Reaction, color = Subject))+
  geom_point() +
  stat_smooth(aes(group = Subject), method = "lm", se = F) +
  labs(x = "Days", y = "Reaction time") +
  theme_bw()

ggplot(dta, aes(Days, Reaction)) + 
  geom_point(alpha = 0.4,size = 1) +
  stat_smooth(aes(group = 1), method = "lm", se = F, col = "skyblue") +
  facet_wrap( ~ Subject)+theme_bw()

summary(m0 <- lmer(Reaction ~ Days+ (Days | Subject), data = dta))
## Linear mixed model fit by REML ['lmerMod']
## Formula: Reaction ~ Days + (Days | Subject)
##    Data: dta
## 
## REML criterion at convergence: 1743.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9536 -0.4634  0.0231  0.4634  5.1793 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  Subject  (Intercept) 612.09   24.740       
##           Days         35.07    5.922   0.07
##  Residual             654.94   25.592       
## Number of obs: 180, groups:  Subject, 18
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  251.405      6.825   36.84
## Days          10.467      1.546    6.77
## 
## Correlation of Fixed Effects:
##      (Intr)
## Days -0.138