The movie Moneyball focuses on the “quest for the secret of success in baseball”. It follows a low-budget team, the Oakland Athletics, who believed that underused statistics, such as a player’s ability to get on base, betterpredict the ability to score runs than typical statistics like home runs, RBIs (runs batted in), and batting average. Obtaining players who excelled in these underused statistics turned out to be much more affordable for the team.
In this lab we’ll be looking at data from all 30 Major League Baseball teams and examining the linear relationship between runs scored in a season and a number of other player statistics. Our aim will be to summarize these relationships both graphically and numerically in order to find which variable, if any, helps us best predict a team’s runs scored in a season.
Let’s load up the data for the 2011 season.
load("more/mlb11.RData")
In addition to runs scored, there are seven traditionally used variables in the data set: at-bats, hits, home runs, batting average, strikeouts, stolen bases, and wins. There are also three newer variables: on-base percentage, slugging percentage, and on-base plus slugging. For the first portion of the analysis we’ll consider the seven traditional variables. At the end of the lab, you’ll work with the newer variables on your own.
runs
and one of the other numerical variables? Plot this relationship using the variable at_bats
as the predictor. Does the relationship look linear? If you knew a team’s at_bats
, would you be comfortable using a linear model to predict the number of runs?If the relationship looks linear, we can quantify the strength of the relationship with the correlation coefficient.
I would use a scatter plot to display the relationship in between the variables.
plot(mlb11$at_bats, mlb11$runs, # plot the variables
xlab="At Bats", # x???axis label
ylab="runs") # y???axis label
The scatter plot displays a weak positive linear relationship, which can be used for prediction
cor(mlb11$runs, mlb11$at_bats)
## [1] 0.610627
Think back to the way that we described the distribution of a single variable. Recall that we discussed characteristics such as center, spread, and shape. It’s also useful to be able to describe the relationship of two numerical variables, such as runs
and at_bats
above.
The relationship seems to be a little sparsed or dispersed, the distribution of the points seems to grow in a positive direction with some leverage and the relationship seems to have a positive correlation.
Just as we used the mean and standard deviation to summarize a single variable, we can summarize the relationship between these two variables by finding the line that best follows their association. Use the following interactive function to select the line that you think does the best job of going through the cloud of points.
plot_ss(x = mlb11$at_bats, y = mlb11$runs)
## Click two points to make a line.
## Call:
## lm(formula = y ~ x, data = pts)
##
## Coefficients:
## (Intercept) x
## -2789.2429 0.6305
##
## Sum of Squares: 123721.9
After running this command, you’ll be prompted to click two points on the plot to define a line. Once you’ve done that, the line you specified will be shown in black and the residuals in blue. Note that there are 30 residuals, one for each of the 30 observations. Recall that the residuals are the difference between the observed values and the values predicted by the line:
\[ e_i = y_i - \hat{y}_i \]
The most common way to do linear regression is to select the line that minimizes the sum of squared residuals. To visualize the squared residuals, you can rerun the plot command and add the argument showSquares = TRUE
.
plot_ss(x = mlb11$at_bats, y = mlb11$runs, showSquares = TRUE)
## Click two points to make a line.
## Call:
## lm(formula = y ~ x, data = pts)
##
## Coefficients:
## (Intercept) x
## -2789.2429 0.6305
##
## Sum of Squares: 123721.9
Note that the output from the plot_ss
function provides you with the slope and intercept of your line as well as the sum of squares.
Using plot_ss
, choose a line that does a good job of minimizing the sum of squares. Run the function several times. What was the smallest sum of squares that you got? How does it compare to your neighbors?
The smallest sum of squares thet I got was 123721.9
It is rather cumbersome to try to get the correct least squares line, i.e. the line that minimizes the sum of squared residuals, through trial and error. Instead we can use the lm
function in R to fit the linear model (a.k.a. regression line).
m1 <- lm(runs ~ at_bats, data = mlb11)
The first argument in the function lm
is a formula that takes the form y ~ x
. Here it can be read that we want to make a linear model of runs
as a function of at_bats
. The second argument specifies that R should look in the mlb11
data frame to find the runs
and at_bats
variables.
The output of lm
is an object that contains all of the information we need about the linear model that was just fit. We can access this information using the summary function.
summary(m1)
##
## Call:
## lm(formula = runs ~ at_bats, data = mlb11)
##
## Residuals:
## Min 1Q Median 3Q Max
## -125.58 -47.05 -16.59 54.40 176.87
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2789.2429 853.6957 -3.267 0.002871 **
## at_bats 0.6305 0.1545 4.080 0.000339 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 66.47 on 28 degrees of freedom
## Multiple R-squared: 0.3729, Adjusted R-squared: 0.3505
## F-statistic: 16.65 on 1 and 28 DF, p-value: 0.0003388
Let’s consider this output piece by piece. First, the formula used to describe the model is shown at the top. After the formula you find the five-number summary of the residuals. The “Coefficients” table shown next is key; its first column displays the linear model’s y-intercept and the coefficient of at_bats
. With this table, we can write down the least squares regression line for the linear model:
\[ \hat{y} = -2789.2429 + 0.6305 * atbats \]
One last piece of information we will discuss from the summary output is the Multiple R-squared, or more simply, \(R^2\). The \(R^2\) value represents the proportion of variability in the response variable that is explained by the explanatory variable. For this model, 37.3% of the variability in runs is explained by at-bats.
homeruns
to predict runs
. Using the estimates from the R output, write the equation of the regression line. What does the slope tell us in the context of the relationship between success of a team and its home runs?Ans
plot_ss(x = mlb11$homeruns, y = mlb11$runs, showSquares = TRUE)
## Click two points to make a line.
## Call:
## lm(formula = y ~ x, data = pts)
##
## Coefficients:
## (Intercept) x
## 415.239 1.835
##
## Sum of Squares: 73671.99
plot_ss(x = mlb11\(homeruns, y = mlb11\)runs, showSquares = TRUE)
plot_ss(x = mlb11$homeruns, y = mlb11$runs, showSquares = TRUE)
## Click two points to make a line.
## Call:
## lm(formula = y ~ x, data = pts)
##
## Coefficients:
## (Intercept) x
## 415.239 1.835
##
## Sum of Squares: 73671.99
cor(mlb11$runs, mlb11$homeruns)
## [1] 0.7915577
m2 <- lm(runs ~ homeruns, data = mlb11)
summary(m2)
##
## Call:
## lm(formula = runs ~ homeruns, data = mlb11)
##
## Residuals:
## Min 1Q Median 3Q Max
## -91.615 -33.410 3.231 24.292 104.631
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 415.2389 41.6779 9.963 1.04e-10 ***
## homeruns 1.8345 0.2677 6.854 1.90e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 51.29 on 28 degrees of freedom
## Multiple R-squared: 0.6266, Adjusted R-squared: 0.6132
## F-statistic: 46.98 on 1 and 28 DF, p-value: 1.9e-07
equation of regression line runs \[= 1.8345 \cdot homeruns + 415.2389 \]
The slope tell us that based on this regression line it will be benefitial for the team since the more homeruns the more runs the team will have, increasing the odds of winning games.
Let’s create a scatterplot with the least squares line laid on top.
plot(mlb11$runs ~ mlb11$at_bats)
abline(m1)
The function abline
plots a line based on its slope and intercept. Here, we used a shortcut by providing the model m1
, which contains both parameter estimates. This line can be used to predict \(y\) at any value of \(x\). When predictions are made for values of \(x\) that are beyond the range of the observed data, it is referred to as extrapolation and is not usually recommended. However, predictions made within the range of the data are more reliable. They’re also used to compute the residuals.
To assess whether the linear model is reliable, we need to check for (1) linearity, (2) nearly normal residuals, and (3) constant variability.
Linearity: You already checked if the relationship between runs and at-bats is linear using a scatterplot. We should also verify this condition with a plot of the residuals vs. at-bats. Recall that any code following a # is intended to be a comment that helps understand the code but is ignored by R.
plot(m1$residuals ~ mlb11$at_bats)
abline(h = 0, lty = 3) # adds a horizontal dashed line at y = 0
Based on the pattern, we can notice that the residuals are positioned around zero, indicating a constant linearity of the relationship between runs and at_bats.
Nearly normal residuals: To check this condition, we can look at a histogram
hist(m1$residuals)
or a normal probability plot of the residuals.
qqnorm(m1$residuals)
qqline(m1$residuals) # adds diagonal line to the normal prob plot
Based on both graphs the normal residuals condition seems to be met.
Constant variability:
Based on the plot in (1), does the constant variability condition appear to be met?
yes * * *
mlb11
that you think might be a good predictor of runs
. Produce a scatterplot of the two variables and fit a linear model. At a glance, does there seem to be a linear relationship?I will select bat_avg
m3 <- lm(runs ~ bat_avg, data = mlb11)
plot(mlb11$bat_avg, mlb11$runs, # plot the variables
xlab="bat_avg", # x???axis label
ylab="Runs") # y???axis label
abline(m3)
summary(m3)
##
## Call:
## lm(formula = runs ~ bat_avg, data = mlb11)
##
## Residuals:
## Min 1Q Median 3Q Max
## -94.676 -26.303 -5.496 28.482 131.113
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -642.8 183.1 -3.511 0.00153 **
## bat_avg 5242.2 717.3 7.308 5.88e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 49.23 on 28 degrees of freedom
## Multiple R-squared: 0.6561, Adjusted R-squared: 0.6438
## F-statistic: 53.41 on 1 and 28 DF, p-value: 5.877e-08
At a glance it does seem like there is a linear relationship
How does this relationship compare to the relationship between runs
and at_bats
? Use the R\(^2\) values from the two model summaries to compare. Does your variable seem to predict runs
better than at_bats
? How can you tell?
the relationship between runs
and at_bats
has R\(^2\) as 0.3505 which is less than relationship between ‘runs’ and ‘bat_avg’ of (0.6438 )
This relationships is more stronger linear realationship than the runs and at_bats
cor(mlb11$runs, mlb11$bat_avg)
## [1] 0.8099859
runs
and each of the other five traditional variables. Which variable best predicts runs
? Support your conclusion using the graphical and numerical methods we’ve discussed (for the sake of conciseness, only include output for the best variable, not all five).runs & homeruns
plot_ss(x = mlb11$homeruns, y = mlb11$runs, showSquares = TRUE)
## Click two points to make a line.
## Call:
## lm(formula = y ~ x, data = pts)
##
## Coefficients:
## (Intercept) x
## 415.239 1.835
##
## Sum of Squares: 73671.99
rm1 <- lm(runs ~ homeruns, data = mlb11)
summary(rm1)
##
## Call:
## lm(formula = runs ~ homeruns, data = mlb11)
##
## Residuals:
## Min 1Q Median 3Q Max
## -91.615 -33.410 3.231 24.292 104.631
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 415.2389 41.6779 9.963 1.04e-10 ***
## homeruns 1.8345 0.2677 6.854 1.90e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 51.29 on 28 degrees of freedom
## Multiple R-squared: 0.6266, Adjusted R-squared: 0.6132
## F-statistic: 46.98 on 1 and 28 DF, p-value: 1.9e-07
Rsquared is 0.6132
runs & hits
plot_ss(x = mlb11$hits, y = mlb11$runs, showSquares = TRUE)
## Click two points to make a line.
## Call:
## lm(formula = y ~ x, data = pts)
##
## Coefficients:
## (Intercept) x
## -375.5600 0.7589
##
## Sum of Squares: 70638.75
m <- lm(runs ~ hits, data = mlb11)
plot(mlb11$hits, mlb11$runs, # plot the variables
xlab="hits", # x???axis label
ylab="Runs") # y???axis label
abline(m)
summary(m)
##
## Call:
## lm(formula = runs ~ hits, data = mlb11)
##
## Residuals:
## Min 1Q Median 3Q Max
## -103.718 -27.179 -5.233 19.322 140.693
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -375.5600 151.1806 -2.484 0.0192 *
## hits 0.7589 0.1071 7.085 1.04e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 50.23 on 28 degrees of freedom
## Multiple R-squared: 0.6419, Adjusted R-squared: 0.6292
## F-statistic: 50.2 on 1 and 28 DF, p-value: 1.043e-07
R2 is 0.6292
runs & strikeouts
plot_ss(x = mlb11$strikeouts, y = mlb11$runs, showSquares = TRUE)
## Click two points to make a line.
## Call:
## lm(formula = y ~ x, data = pts)
##
## Coefficients:
## (Intercept) x
## 1054.7342 -0.3141
##
## Sum of Squares: 163870.1
rm3 <- lm(runs ~ strikeouts, data = mlb11)
summary(rm3)
##
## Call:
## lm(formula = runs ~ strikeouts, data = mlb11)
##
## Residuals:
## Min 1Q Median 3Q Max
## -132.27 -46.95 -11.92 55.14 169.76
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1054.7342 151.7890 6.949 1.49e-07 ***
## strikeouts -0.3141 0.1315 -2.389 0.0239 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 76.5 on 28 degrees of freedom
## Multiple R-squared: 0.1694, Adjusted R-squared: 0.1397
## F-statistic: 5.709 on 1 and 28 DF, p-value: 0.02386
R2 is 0.1397
runs & stolen_bases
plot_ss(x = mlb11$stolen_bases, y = mlb11$runs, showSquares = TRUE)
## Click two points to make a line.
## Call:
## lm(formula = y ~ x, data = pts)
##
## Coefficients:
## (Intercept) x
## 677.3074 0.1491
##
## Sum of Squares: 196706.3
rm4 <- lm(runs ~ stolen_bases, data = mlb11)
plot(mlb11$stolen_bases, mlb11$runs, # plot the variables
xlab="stolen_bases", # x???axis label
ylab="Runs") # y???axis label
abline(rm4)
summary(rm4)
##
## Call:
## lm(formula = runs ~ stolen_bases, data = mlb11)
##
## Residuals:
## Min 1Q Median 3Q Max
## -139.94 -62.87 10.01 38.54 182.49
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 677.3074 58.9751 11.485 4.17e-12 ***
## stolen_bases 0.1491 0.5211 0.286 0.777
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 83.82 on 28 degrees of freedom
## Multiple R-squared: 0.002914, Adjusted R-squared: -0.0327
## F-statistic: 0.08183 on 1 and 28 DF, p-value: 0.7769
Rsquared is 0.0327
runs & wins
plot_ss(x = mlb11$wins, y = mlb11$runs, showSquares = TRUE)
## Click two points to make a line.
## Call:
## lm(formula = y ~ x, data = pts)
##
## Coefficients:
## (Intercept) x
## 342.121 4.341
##
## Sum of Squares: 126068.4
rm5 <- lm(runs ~ wins, data = mlb11)
summary(rm5)
##
## Call:
## lm(formula = runs ~ wins, data = mlb11)
##
## Residuals:
## Min 1Q Median 3Q Max
## -145.450 -47.506 -7.482 47.346 142.186
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 342.121 89.223 3.834 0.000654 ***
## wins 4.341 1.092 3.977 0.000447 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 67.1 on 28 degrees of freedom
## Multiple R-squared: 0.361, Adjusted R-squared: 0.3381
## F-statistic: 15.82 on 1 and 28 DF, p-value: 0.0004469
Rsquared is 0.3381
After looking at all the variables with their Residual values, we can see that the lowest is with runs and hits
runs
? Using the limited (or not so limited) information you know about these baseball statistics, does your result make sense?runs & new_onbase
plot_ss(x = mlb11$new_onbase, y = mlb11$runs, showSquares = TRUE)
## Click two points to make a line.
## Call:
## lm(formula = y ~ x, data = pts)
##
## Coefficients:
## (Intercept) x
## -1118 5654
##
## Sum of Squares: 29768.7
rm1 <- lm(runs ~ new_onbase, data = mlb11)
plot(mlb11$new_onbase, mlb11$runs, # plot the variables
xlab="new_onbase", # x???axis label
ylab="Runs") # y???axis label
abline(rm1)
summary(rm1)
##
## Call:
## lm(formula = runs ~ new_onbase, data = mlb11)
##
## Residuals:
## Min 1Q Median 3Q Max
## -58.270 -18.335 3.249 19.520 69.002
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1118.4 144.5 -7.741 1.97e-08 ***
## new_onbase 5654.3 450.5 12.552 5.12e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 32.61 on 28 degrees of freedom
## Multiple R-squared: 0.8491, Adjusted R-squared: 0.8437
## F-statistic: 157.6 on 1 and 28 DF, p-value: 5.116e-13
runs & new_slug
plot_ss(x = mlb11$new_slug, y = mlb11$runs, showSquares = TRUE)
## Click two points to make a line.
## Call:
## lm(formula = y ~ x, data = pts)
##
## Coefficients:
## (Intercept) x
## -375.8 2681.3
##
## Sum of Squares: 20345.54
rm1 <- lm(runs ~ new_slug, data = mlb11)
summary(rm1)
##
## Call:
## lm(formula = runs ~ new_slug, data = mlb11)
##
## Residuals:
## Min 1Q Median 3Q Max
## -45.41 -18.66 -0.91 16.29 52.29
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -375.80 68.71 -5.47 7.70e-06 ***
## new_slug 2681.33 171.83 15.61 2.42e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 26.96 on 28 degrees of freedom
## Multiple R-squared: 0.8969, Adjusted R-squared: 0.8932
## F-statistic: 243.5 on 1 and 28 DF, p-value: 2.42e-15
runs & new_obs
plot_ss(x = mlb11$new_obs, y = mlb11$runs, showSquares = TRUE)
## Click two points to make a line.
## Call:
## lm(formula = y ~ x, data = pts)
##
## Coefficients:
## (Intercept) x
## -686.6 1919.4
##
## Sum of Squares: 12837.66
rm1 <- lm(runs ~ new_obs, data = mlb11)
summary(rm1)
##
## Call:
## lm(formula = runs ~ new_obs, data = mlb11)
##
## Residuals:
## Min 1Q Median 3Q Max
## -43.456 -13.690 1.165 13.935 41.156
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -686.61 68.93 -9.962 1.05e-10 ***
## new_obs 1919.36 95.70 20.057 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 21.41 on 28 degrees of freedom
## Multiple R-squared: 0.9349, Adjusted R-squared: 0.9326
## F-statistic: 402.3 on 1 and 28 DF, p-value: < 2.2e-16
Based on the R2 the best predictor for runs will be new_obs
Linearity
rm1 <- lm(runs ~ new_obs, data = mlb11)
plot(rm1$residuals ~ mlb11$new_obs)
abline(h = 0, lty = 3)
The relationship looks linear
Nearly Normal residuals
hist(rm1$residuals)
we can observe that the residuals follow some sort of normality
qqnorm(rm1$residuals)
qqline(rm1$residuals)
distribution are following around a stright line. hence we can conclude that this model satisfies the nearly normal residuals condition.
Constant Variability
m3 <- lm(runs ~ new_obs, data = mlb11)
plot(mlb11$new_obs, mlb11$runs, # plot the variables
xlab="new_obs", # x???axis label
ylab="Runs") # y???axis label
abline(m3)
from the scatter plot we can see the observations maintain a constant variability along the fitted least square error line
This is a product of OpenIntro that is released under a Creative Commons Attribution-ShareAlike 3.0 Unported. This lab was adapted for OpenIntro by Andrew Bray and Mine Çetinkaya-Rundel from a lab written by the faculty and TAs of UCLA Statistics.