The objectives of this problem set is to orient you to a number of activities in R. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion name your final output .html file as: YourName_ANLY512-Section-Year-Semester.html and upload it to the “Problem Set 2” assignmenet on Moodle.
anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.anscombe
## x1 x2 x3 x4 y1 y2 y3 y4
## 1 10 10 10 8 8.04 9.14 7.46 6.58
## 2 8 8 8 8 6.95 8.14 6.77 5.76
## 3 13 13 13 8 7.58 8.74 12.74 7.71
## 4 9 9 9 8 8.81 8.77 7.11 8.84
## 5 11 11 11 8 8.33 9.26 7.81 8.47
## 6 14 14 14 8 9.96 8.10 8.84 7.04
## 7 6 6 6 8 7.24 6.13 6.08 5.25
## 8 4 4 4 19 4.26 3.10 5.39 12.50
## 9 12 12 12 8 10.84 9.13 8.15 5.56
## 10 7 7 7 8 4.82 7.26 6.42 7.91
## 11 5 5 5 8 5.68 4.74 5.73 6.89
data<-(anscombe)
fBasics() package!)library(fBasics)
## Loading required package: timeDate
## Loading required package: timeSeries
##
## Rmetrics Package fBasics
## Analysing Markets and calculating Basic Statistics
## Copyright (C) 2005-2014 Rmetrics Association Zurich
## Educational Software for Financial Engineering and Computational Science
## Rmetrics is free software and comes with ABSOLUTELY NO WARRANTY.
## https://www.rmetrics.org --- Mail to: info@rmetrics.org
colAvgs(anscombe) ##Mean
## x1 x2 x3 x4 y1 y2 y3 y4
## 9.000000 9.000000 9.000000 9.000000 7.500909 7.500909 7.500000 7.500909
colVars(anscombe) ##Variance
## x1 x2 x3 x4 y1 y2 y3
## 11.000000 11.000000 11.000000 11.000000 4.127269 4.127629 4.122620
## y4
## 4.123249
correlationTest(anscombe$x1, anscombe$y1, method = c("pearson", "kendall", "spearman"),
title = "Correlation of x1 and y1") ##correlation
##
## Title:
## Correlation of x1 and y1
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8164
## STATISTIC:
## t: 4.2415
## P VALUE:
## Alternative Two-Sided: 0.00217
## Alternative Less: 0.9989
## Alternative Greater: 0.001085
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4244, 0.9507
## Less: -1, 0.9388
## Greater: 0.5113, 1
##
## Description:
## Wed Nov 15 08:00:09 2017
correlationTest(anscombe$x2, anscombe$y2, method = c("pearson", "kendall", "spearman"),
title = "Correlation of x2 and y2") ##correlation
##
## Title:
## Correlation of x2 and y2
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8162
## STATISTIC:
## t: 4.2386
## P VALUE:
## Alternative Two-Sided: 0.002179
## Alternative Less: 0.9989
## Alternative Greater: 0.001089
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4239, 0.9506
## Less: -1, 0.9387
## Greater: 0.5109, 1
##
## Description:
## Wed Nov 15 08:00:09 2017
correlationTest(anscombe$x3, anscombe$y3, method = c("pearson", "kendall", "spearman"),
title = "Correlation of x3 and y3") ##correlation
##
## Title:
## Correlation of x3 and y3
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8163
## STATISTIC:
## t: 4.2394
## P VALUE:
## Alternative Two-Sided: 0.002176
## Alternative Less: 0.9989
## Alternative Greater: 0.001088
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4241, 0.9507
## Less: -1, 0.9387
## Greater: 0.511, 1
##
## Description:
## Wed Nov 15 08:00:09 2017
correlationTest(anscombe$x4, anscombe$y4, method = c("pearson", "kendall", "spearman"),
title = "Correlation of x4 and y4") ##correlation
##
## Title:
## Correlation of x4 and y4
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8165
## STATISTIC:
## t: 4.243
## P VALUE:
## Alternative Two-Sided: 0.002165
## Alternative Less: 0.9989
## Alternative Greater: 0.001082
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4246, 0.9507
## Less: -1, 0.9388
## Greater: 0.5115, 1
##
## Description:
## Wed Nov 15 08:00:09 2017
plot(data$x1, data$y1, xlab="x1", ylab="y1", main="Scatter plot of x1 and y1")
plot(data$x2, data$y2, xlab="x2", ylab="y2", main="Scatter plot of x2 and y2")
plot(data$x3, data$y3, xlab="x3", ylab="y3", main="Scatter plot of x3 and y3")
plot(data$x4, data$y4, xlab="x4", ylab="y4", main="Scatter plot of x4 and y4")
op <- par(mfcol = c(2, 2)) # 2 x 2 pictures on one plot
plot(data$x1, data$y1, xlab="x1", ylab="y1", main="Scatter plot of x1 and y1", pch=19, mfg=c(1, 1))
plot(data$x2, data$y2, xlab="x2", ylab="y2", main="Scatter plot of x2 and y2", pch=19, mfg=c(1, 2))
plot(data$x3, data$y3, xlab="x3", ylab="y3", main="Scatter plot of x3 and y3", pch=19, mfg=c(2, 1))
plot(data$x4, data$y4, xlab="x4", ylab="y4", main="Scatter plot of x4 and y4", pch=19, mfg=c(2, 2))
par(op); #Restore graphics parameters
lm() function.linear1<-lm(data$y1~data$x1)
summary(linear1)
##
## Call:
## lm(formula = data$y1 ~ data$x1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.92127 -0.45577 -0.04136 0.70941 1.83882
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0001 1.1247 2.667 0.02573 *
## data$x1 0.5001 0.1179 4.241 0.00217 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295
## F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
Model 1: y1=3.0001+0.5001*x1
linear2<-lm(data$y2~data$x2)
summary(linear2)
##
## Call:
## lm(formula = data$y2 ~ data$x2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9009 -0.7609 0.1291 0.9491 1.2691
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.001 1.125 2.667 0.02576 *
## data$x2 0.500 0.118 4.239 0.00218 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179
Model 2: y21=3.0001+0.500*x2
linear3<-lm(data$y3~data$x3)
summary(linear3)
##
## Call:
## lm(formula = data$y3 ~ data$x3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.1586 -0.6146 -0.2303 0.1540 3.2411
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0025 1.1245 2.670 0.02562 *
## data$x3 0.4997 0.1179 4.239 0.00218 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.236 on 9 degrees of freedom
## Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176
Model 3: y3=3.0025+0.4997*x3
linear4<-lm(data$y4~data$x4)
summary(linear4)
##
## Call:
## lm(formula = data$y4 ~ data$x4)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.751 -0.831 0.000 0.809 1.839
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0017 1.1239 2.671 0.02559 *
## data$x4 0.4999 0.1178 4.243 0.00216 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.236 on 9 degrees of freedom
## Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297
## F-statistic: 18 on 1 and 9 DF, p-value: 0.002165
Model 4: y4=3.0017+0.4999*x4
op <- par(mfcol = c(2, 2)) # 2 x 2 pictures on one plot
plot(data$x1, data$y1, xlab="x1", ylab="y1", main="Scatter plot of x1 and y1", pch=19, mfg=c(1, 1))
abline(lm(data$y1~data$x1))
plot(data$x2, data$y2, xlab="x2", ylab="y2", main="Scatter plot of x2 and y2", pch=19, mfg=c(1, 2))
abline(lm(data$y2~data$x2))
plot(data$x3, data$y3, xlab="x3", ylab="y3", main="Scatter plot of x3 and y3", pch=19, mfg=c(2, 1))
abline(lm(data$y3~data$x3))
plot(data$x4, data$y4, xlab="x4", ylab="y4", main="Scatter plot of x4 and y4", pch=19, mfg=c(2, 2))
abline(lm(data$y4~data$x4))
par(op); #Restore graphics parameters
anova(linear1, test="Chisq")
## Analysis of Variance Table
##
## Response: data$y1
## Df Sum Sq Mean Sq F value Pr(>F)
## data$x1 1 27.510 27.5100 17.99 0.00217 **
## Residuals 9 13.763 1.5292
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(linear2, test="Chisq")
## Analysis of Variance Table
##
## Response: data$y2
## Df Sum Sq Mean Sq F value Pr(>F)
## data$x2 1 27.500 27.5000 17.966 0.002179 **
## Residuals 9 13.776 1.5307
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(linear3, test="Chisq")
## Analysis of Variance Table
##
## Response: data$y3
## Df Sum Sq Mean Sq F value Pr(>F)
## data$x3 1 27.470 27.4700 17.972 0.002176 **
## Residuals 9 13.756 1.5285
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(linear4, test="Chisq")
## Analysis of Variance Table
##
## Response: data$y4
## Df Sum Sq Mean Sq F value Pr(>F)
## data$x4 1 27.490 27.4900 18.003 0.002165 **
## Residuals 9 13.742 1.5269
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Model fitting is an optimization algorithm. Each of the methods above optimizes a likelihood function to find the “best fitting”" model.
Anscombe’s Quartet contains four datasets. Though the simple statistical values of four datasets are identical, graphs of four data sets are completely different.This proves the importance of data visualization in form of graphical datasets.