This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.
# Load library
library(readxl)
library(ggplot2)
library(scales)
library(grid)
library(gridExtra)
library(corrplot)
library(ggforce)
library(ggridges)
library(plyr)
library(plotly)
library(tibble)
library(data.table)
library(dplyr)
# Load the data
gis<-as.tibble(fread('D:/gis_BNAM/Book1.csv'))
# Show the structure of data
attach(gis)
The following objects are masked from gis (pos = 3):
BIRT, CHIL, DEAT, EMPL, FIRM, FISC, FORE, HOSP, HPIA, LIBR, LIFE, LISP, MAGE,
OBJECTID, PARK, PKSP, POP65, POPU, SHOP, SIEH, SUIC, TAX, WSTG, WSTR
The following objects are masked from gis (pos = 4):
BIRT, CHIL, DEAT, EMPL, FIRM, FISC, FORE, HOSP, HPIA, LIBR, LIFE, LISP, MAGE,
OBJECTID, PARK, PKSP, POP65, POPU, SHOP, SIEH, SUIC, TAX, WSTG, WSTR
The following objects are masked from gis (pos = 7):
BIRT, CHIL, DEAT, EMPL, FIRM, FISC, FORE, HOSP, HPIA, LIBR, LIFE, LISP, MAGE,
OBJECTID, PARK, PKSP, POP65, POPU, SHOP, SIEH, SUIC, TAX, WSTG, WSTR
The following objects are masked from gis (pos = 8):
BIRT, CHIL, DEAT, EMPL, FIRM, FISC, FORE, HOSP, HPIA, LIBR, LIFE, LISP, MAGE,
OBJECTID, PARK, PKSP, POP65, POPU, SHOP, SIEH, SUIC, TAX, WSTG, WSTR
summary(gis)
OBJECTID POPU POP65 MAGE FORE LIFE
Min. : 1 Min. :134436 Min. :20431 Min. :39.10 Min. : 1995 Min. :80.27
1st Qu.: 7 1st Qu.:333615 1st Qu.:47319 1st Qu.:39.90 1st Qu.: 4583 1st Qu.:81.10
Median :13 Median :417209 Median :52401 Median :41.10 Median : 8671 Median :81.41
Mean :13 Mean :411313 Mean :51211 Mean :41.16 Mean :10929 Mean :81.48
3rd Qu.:19 3rd Qu.:487368 3rd Qu.:60958 3rd Qu.:41.90 3rd Qu.:13793 3rd Qu.:81.73
Max. :25 Max. :663904 Max. :70311 Max. :43.70 Max. :38764 Max. :83.14
BIRT DEAT SIEH SUIC TAX FISC
Min. : 905 Min. : 683 Min. : 5344 Min. : 36.00 Min. : 183257 Min. :19.20
1st Qu.:2553 1st Qu.:1404 1st Qu.: 8799 1st Qu.: 68.00 1st Qu.: 277933 1st Qu.:25.50
Median :3480 Median :1666 Median :11170 Median : 93.00 Median : 354070 Median :31.30
Mean :3348 Mean :1686 Mean :10928 Mean : 98.68 Mean : 524053 Mean :36.22
3rd Qu.:4089 3rd Qu.:1968 3rd Qu.:12588 3rd Qu.:133.00 3rd Qu.: 523352 3rd Qu.:45.10
Max. :6001 Max. :2639 Max. :16632 Max. :158.00 Max. :2130162 Max. :65.20
FIRM EMPL HPIA LISP HOSP LIBR
Min. :18584 Min. : 66137 Min. :109.3 Min. :23.45 Min. : 619 Min. : 400
1st Qu.:24760 1st Qu.:107496 1st Qu.:133.6 1st Qu.:25.48 1st Qu.:2386 1st Qu.:1070
Median :28047 Median :137079 Median :144.9 Median :27.71 Median :3185 Median :1428
Mean :32512 Mean :189595 Mean :142.8 Mean :27.50 Mean :3414 Mean :1688
3rd Qu.:36679 3rd Qu.:227966 3rd Qu.:150.5 3rd Qu.:28.38 3rd Qu.:3706 3rd Qu.:2278
Max. :70262 Max. :645060 Max. :171.4 Max. :34.97 Max. :7306 Max. :3391
PARK PKSP SHOP CHIL WSTG
Min. : 1279518 Min. : 65598 Min. : 25521 Min. : 66.0 Min. : 641.7
1st Qu.: 3134003 1st Qu.:111803 1st Qu.: 42574 1st Qu.:192.0 1st Qu.:1024.0
Median : 4404111 Median :143921 Median : 73169 Median :244.0 Median :1192.2
Mean : 6439076 Mean :155093 Mean :107749 Mean :263.9 Mean :1488.0
3rd Qu.:10069616 3rd Qu.:161648 3rd Qu.:111280 3rd Qu.:329.0 3rd Qu.:1860.8
Max. :15874534 Max. :379400 Max. :521623 Max. :521.0 Max. :3225.7
WSTR
Min. : 573.1
1st Qu.: 911.3
Median :1051.7
Mean :1261.3
3rd Qu.:1710.7
Max. :2401.7
glimpse(gis)
Observations: 25
Variables: 24
$ OBJECTID <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 2...
$ POPU <int> 163993, 134436, 247297, 304565, 374798, 373657, 418341, 468699, 333615, 3525...
$ POP65 <int> 24999, 20431, 35912, 38559, 40764, 52965, 54687, 63782, 53023, 49161, 69578,...
$ MAGE <dbl> 42.8, 43.2, 41.9, 40.9, 39.6, 41.4, 42.4, 41.1, 43.7, 42.9, 41.1, 41.8, 41.4...
$ FORE <int> 8851, 8671, 14613, 7990, 14715, 13793, 4736, 10249, 3557, 1995, 3741, 4583, ...
$ LIFE <dbl> 81.06, 81.10, 81.90, 81.37, 81.87, 80.59, 80.51, 81.41, 80.52, 81.36, 81.26,...
$ BIRT <int> 905, 1041, 1976, 2654, 3011, 2634, 3288, 3537, 2360, 2553, 4715, 4085, 2334,...
$ DEAT <int> 864, 683, 1120, 1265, 1398, 1831, 1968, 2117, 1747, 1632, 2639, 2296, 1405, ...
$ SIEH <int> 7604, 5344, 8391, 7562, 8799, 12050, 11714, 14530, 12588, 10228, 16632, 1542...
$ SUIC <int> 36, 40, 70, 60, 67, 106, 147, 90, 101, 97, 158, 125, 60, 89, 93, 144, 92, 68...
$ TAX <int> 662922, 1039202, 521257, 354070, 277933, 325385, 249836, 302951, 183257, 191...
$ FISC <dbl> 54.6, 65.2, 47.1, 40.0, 32.3, 29.5, 23.3, 25.5, 22.8, 23.8, 19.2, 23.7, 30.1...
$ FIRM <int> 40923, 65364, 20482, 25714, 24760, 32878, 28047, 25104, 19223, 18584, 26081,...
$ EMPL <int> 245698, 380407, 126073, 152831, 117420, 137079, 99712, 107496, 70919, 66137,...
$ HPIA <dbl> 146.0, 141.0, 135.3, 132.0, 143.8, 144.8, 159.7, 144.9, 160.1, 161.8, 171.4,...
$ LISP <dbl> 30.45, 25.10, 30.81, 27.07, 26.08, 27.77, 25.14, 28.38, 23.54, 27.46, 24.34,...
$ HOSP <int> 3277, 1580, 992, 1897, 2579, 5907, 3185, 3364, 2170, 2769, 3503, 3635, 3706,...
$ LIBR <int> 3391, 892, 2037, 1922, 1282, 1098, 989, 1138, 811, 1752, 2819, 1252, 968, 14...
$ PARK <int> 11575356, 3134003, 1795960, 3061710, 3396156, 1279518, 5231744, 8391240, 143...
$ PKSP <int> 86478, 107313, 110751, 116675, 118208, 122229, 119592, 149216, 85446, 108858...
$ SHOP <int> 196965, 521623, 32876, 63854, 85716, 314153, 126215, 88625, 73169, 35597, 42...
$ CHIL <int> 79, 66, 129, 192, 221, 232, 262, 329, 192, 280, 521, 331, 172, 244, 353, 439...
$ WSTG <dbl> 1860.8, 1574.8, 1210.2, 2700.2, 1099.4, 1014.9, 1165.6, 1117.6, 744.2, 641.7...
$ WSTR <dbl> 1710.7, 1365.6, 1095.7, 1898.6, 997.2, 874.5, 1053.3, 994.2, 661.2, 573.1, 9...
# Visualising the data
plot(WSTG, WSTR,main="BNam and Ngoc")
abline(lm(WSTG~WSTR))
ID=c(gis$OBJECTID)
Type=c(rep("WSTG",25),rep("WSTR",25))
value=c(gis$WSTG,gis$WSTR)
data=data.frame(ID,Type,value)
ggplot(data, aes(fill=Type, y=value, x=ID)) +
geom_bar( stat="identity")