Objectives

The objectives of this problem set is to orient you to a number of activities in R. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion name your final output .html file as: YourName_ANLY512-Section-Year-Semester.html and upload it to the “Problem Set 2” assignmenet on Moodle.

Questions

  1. Anscombes quartet is a set of 4 \(x,y\) data sets that were published by Francis Anscombe in a 1973 paper Graphs in statistical analysis. For this first question load the anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.
library(datasets)
data<-anscombe
  1. Summarise the data by calculating the mean, variance, for each column and the correlation between each pair (eg. x1 and y1, x2 and y2, etc) (Hint: use the fBasics() package!)
library(fBasics)
## Loading required package: timeDate
## Loading required package: timeSeries
## 
## Rmetrics Package fBasics
## Analysing Markets and calculating Basic Statistics
## Copyright (C) 2005-2014 Rmetrics Association Zurich
## Educational Software for Financial Engineering and Computational Science
## Rmetrics is free software and comes with ABSOLUTELY NO WARRANTY.
## https://www.rmetrics.org --- Mail to: info@rmetrics.org
summary(data)
##        x1             x2             x3             x4    
##  Min.   : 4.0   Min.   : 4.0   Min.   : 4.0   Min.   : 8  
##  1st Qu.: 6.5   1st Qu.: 6.5   1st Qu.: 6.5   1st Qu.: 8  
##  Median : 9.0   Median : 9.0   Median : 9.0   Median : 8  
##  Mean   : 9.0   Mean   : 9.0   Mean   : 9.0   Mean   : 9  
##  3rd Qu.:11.5   3rd Qu.:11.5   3rd Qu.:11.5   3rd Qu.: 8  
##  Max.   :14.0   Max.   :14.0   Max.   :14.0   Max.   :19  
##        y1               y2              y3              y4        
##  Min.   : 4.260   Min.   :3.100   Min.   : 5.39   Min.   : 5.250  
##  1st Qu.: 6.315   1st Qu.:6.695   1st Qu.: 6.25   1st Qu.: 6.170  
##  Median : 7.580   Median :8.140   Median : 7.11   Median : 7.040  
##  Mean   : 7.501   Mean   :7.501   Mean   : 7.50   Mean   : 7.501  
##  3rd Qu.: 8.570   3rd Qu.:8.950   3rd Qu.: 7.98   3rd Qu.: 8.190  
##  Max.   :10.840   Max.   :9.260   Max.   :12.74   Max.   :12.500
colMeans(data)
##       x1       x2       x3       x4       y1       y2       y3       y4 
## 9.000000 9.000000 9.000000 9.000000 7.500909 7.500909 7.500000 7.500909
colVars(data)
##        x1        x2        x3        x4        y1        y2        y3 
## 11.000000 11.000000 11.000000 11.000000  4.127269  4.127629  4.122620 
##        y4 
##  4.123249
correlationTest(data$x1,data$y1)
## 
## Title:
##  Pearson's Correlation Test
## 
## Test Results:
##   PARAMETER:
##     Degrees of Freedom: 9
##   SAMPLE ESTIMATES:
##     Correlation: 0.8164
##   STATISTIC:
##     t: 4.2415
##   P VALUE:
##     Alternative Two-Sided: 0.00217 
##     Alternative      Less: 0.9989 
##     Alternative   Greater: 0.001085 
##   CONFIDENCE INTERVAL:
##     Two-Sided: 0.4244, 0.9507
##          Less: -1, 0.9388
##       Greater: 0.5113, 1
## 
## Description:
##  Tue Nov 14 23:01:12 2017
correlationTest(data$x2,data$y2)
## 
## Title:
##  Pearson's Correlation Test
## 
## Test Results:
##   PARAMETER:
##     Degrees of Freedom: 9
##   SAMPLE ESTIMATES:
##     Correlation: 0.8162
##   STATISTIC:
##     t: 4.2386
##   P VALUE:
##     Alternative Two-Sided: 0.002179 
##     Alternative      Less: 0.9989 
##     Alternative   Greater: 0.001089 
##   CONFIDENCE INTERVAL:
##     Two-Sided: 0.4239, 0.9506
##          Less: -1, 0.9387
##       Greater: 0.5109, 1
## 
## Description:
##  Tue Nov 14 23:01:12 2017
correlationTest(data$x3,data$y3)
## 
## Title:
##  Pearson's Correlation Test
## 
## Test Results:
##   PARAMETER:
##     Degrees of Freedom: 9
##   SAMPLE ESTIMATES:
##     Correlation: 0.8163
##   STATISTIC:
##     t: 4.2394
##   P VALUE:
##     Alternative Two-Sided: 0.002176 
##     Alternative      Less: 0.9989 
##     Alternative   Greater: 0.001088 
##   CONFIDENCE INTERVAL:
##     Two-Sided: 0.4241, 0.9507
##          Less: -1, 0.9387
##       Greater: 0.511, 1
## 
## Description:
##  Tue Nov 14 23:01:12 2017
correlationTest(data$x4,data$y4)
## 
## Title:
##  Pearson's Correlation Test
## 
## Test Results:
##   PARAMETER:
##     Degrees of Freedom: 9
##   SAMPLE ESTIMATES:
##     Correlation: 0.8165
##   STATISTIC:
##     t: 4.243
##   P VALUE:
##     Alternative Two-Sided: 0.002165 
##     Alternative      Less: 0.9989 
##     Alternative   Greater: 0.001082 
##   CONFIDENCE INTERVAL:
##     Two-Sided: 0.4246, 0.9507
##          Less: -1, 0.9388
##       Greater: 0.5115, 1
## 
## Description:
##  Tue Nov 14 23:01:12 2017
  1. Create scatter plots for each \(x, y\) pair of data.
plot(data$x1,data$y1,xlab="x1", ylab="y1")

plot(data$x2,data$y2,xlab="x2", ylab="y2")

plot(data$x3,data$y3,xlab="x3", ylab="y3")

plot(data$x4,data$y4,xlab="x4", ylab="y4")

  1. Now change the symbols on the scatter plots to solid circles and plot them together as a 4 panel graphic
par(mfrow=c(2,2))
plot(data$x1,data$y1,xlab="x1", ylab="y1",pch=19)
plot(data$x2,data$y2,xlab="x2", ylab="y2",pch=19)
plot(data$x3,data$y3,xlab="x3", ylab="y3",pch=19)
plot(data$x4,data$y4,xlab="x4", ylab="y4",pch=19)

  1. Now fit a linear model to each data set using the lm() function.
lm1<-lm(data$y1~data$x1)
lm1
## 
## Call:
## lm(formula = data$y1 ~ data$x1)
## 
## Coefficients:
## (Intercept)      data$x1  
##      3.0001       0.5001
lm2<-lm(data$y2~data$x2)
lm2
## 
## Call:
## lm(formula = data$y2 ~ data$x2)
## 
## Coefficients:
## (Intercept)      data$x2  
##       3.001        0.500
lm3<-lm(data$y3~data$x3)
lm3
## 
## Call:
## lm(formula = data$y3 ~ data$x3)
## 
## Coefficients:
## (Intercept)      data$x3  
##      3.0025       0.4997
lm4<-lm(data$y4~data$x4)
lm4
## 
## Call:
## lm(formula = data$y4 ~ data$x4)
## 
## Coefficients:
## (Intercept)      data$x4  
##      3.0017       0.4999
  1. Now combine the last two tasks. Create a four panel scatter plot matrix that has both the data points and the regression lines. (hint: the model objects will carry over chunks!)
library(ggplot2)
par(mfrow=c(2,2))
plot(data$x1,data$y1,xlab="x1", ylab="y1",pch=19)
abline(lm1,col="blue")
plot(data$x2,data$y2,xlab="x2", ylab="y2",pch=19)
abline(lm2,col="blue")
plot(data$x3,data$y3,xlab="x3", ylab="y3",pch=19)
abline(lm3,col="blue")
plot(data$x4,data$y4,xlab="x4", ylab="y4",pch=19)
abline(lm4,col="blue")

  1. Now compare the model fits for each model object.
anova(lm1)

Analysis of Variance Table

Response: data\(y1 Df Sum Sq Mean Sq F value Pr(>F) data\)x1 1 27.510 27.5100 17.99 0.00217 ** Residuals 9 13.763 1.5292
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1

anova(lm2)
## Analysis of Variance Table
## 
## Response: data$y2
##           Df Sum Sq Mean Sq F value   Pr(>F)   
## data$x2    1 27.500 27.5000  17.966 0.002179 **
## Residuals  9 13.776  1.5307                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(lm3)
## Analysis of Variance Table
## 
## Response: data$y3
##           Df Sum Sq Mean Sq F value   Pr(>F)   
## data$x3    1 27.470 27.4700  17.972 0.002176 **
## Residuals  9 13.756  1.5285                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(lm4)
## Analysis of Variance Table
## 
## Response: data$y4
##           Df Sum Sq Mean Sq F value   Pr(>F)   
## data$x4    1 27.490 27.4900  18.003 0.002165 **
## Residuals  9 13.742  1.5269                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  1. In text, summarize the lesson of Anscombe’s Quartet and what it says about the value of data visualization.

Anscombe’s Quartet is a series of four datasets (x,y) that have the same summary statistics but look very different. When we use statistics to analyze the datasets, we got the results that the data share some similar statistical properties, for example, means, variances, correlations and linear regression Y = 3.00 + 0.5X. However, when we plot the data, they appear quite different. Data visualization can helps us to get a clear picture of what’s going on and why it can be important to look beyond basic summary statistics when exploring the dataset.