#agrupamientos -clusters- multivariados
campo=read.table("cluster.txt", header=T) # lectura de la base de datos
campo2=transform(campo, temp.suelo=scale(temp.suelo), luz=scale(luz), ph=scale(ph), humedad.suelo=scale(humedad.suelo), temp.org=scale(temp.org), altura.veg=scale(altura.veg), covertura=scale(covertura) ) # estandarizar variables
d <- dist(campo2, method = "euclidean") # matriz de distancias
## Warning in dist(campo2, method = "euclidean"): NAs introducidos por
## coerción
fit <- hclust(d, method="ward.D") # genera cluster jerarquico
plot(fit) # dibuja el cluster

#componentes de varianza
campo3=read.table("promedios.txt", header=T) # lectura de la base de datos
campo4=transform(campo3, temp.suelo=scale(temp.suelo), luz=scale(luz), ph=scale(ph), humedad.suelo=scale(humedad.suelo), temp.org=scale(temp.org), altura.veg=scale(altura.veg), covertura=scale(covertura)) # estandarizar variables
attach(campo4)
library(lme4)
## Warning: package 'lme4' was built under R version 3.3.2
## Loading required package: Matrix

fit4=lmer(temp.suelo ~ 1 + (1 | lugar/sitio))
fit7=lmer(luz ~ 1 + (1 | lugar/sitio))
fit8=lmer(ph ~ 1 + (1 | lugar/sitio))
fit9=lmer(humedad.suelo ~ 1 + (1 | lugar/sitio))
fit10=lmer(temp.org ~ 1 + (1 | lugar/sitio))
fit11=lmer(altura.veg ~ 1 + (1 | lugar/sitio))
fit12=lmer(covertura ~ 1 + (1 | lugar/sitio))
summary(fit4)
## Linear mixed model fit by REML ['lmerMod']
## Formula: temp.suelo ~ 1 + (1 | lugar/sitio)
## 
## REML criterion at convergence: 74.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.18196 -0.51388  0.01091  0.51617  2.01357 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. 
##  sitio:lugar (Intercept) 7.193e-01 8.481e-01
##  lugar       (Intercept) 6.899e-17 8.306e-09
##  Residual                3.503e-01 5.919e-01
## Number of obs: 32, groups:  sitio:lugar, 8; lugar, 2
## 
## Fixed effects:
##               Estimate Std. Error t value
## (Intercept) -8.122e-17  3.176e-01       0
summary(fit7)
## Linear mixed model fit by REML ['lmerMod']
## Formula: luz ~ 1 + (1 | lugar/sitio)
## 
## REML criterion at convergence: 78.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8395 -0.3875 -0.0760  0.2737  3.2220 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  sitio:lugar (Intercept) 0.1811   0.4256  
##  lugar       (Intercept) 0.6592   0.8119  
##  Residual                0.4962   0.7044  
## Number of obs: 32, groups:  sitio:lugar, 8; lugar, 2
## 
## Fixed effects:
##               Estimate Std. Error t value
## (Intercept) -9.873e-16  6.064e-01       0
summary(fit8)
## Linear mixed model fit by REML ['lmerMod']
## Formula: ph ~ 1 + (1 | lugar/sitio)
## 
## REML criterion at convergence: 73.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.4479 -0.3080  0.1109  0.5633  1.4791 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  sitio:lugar (Intercept) 0.2551   0.5051  
##  lugar       (Intercept) 0.7306   0.8548  
##  Residual                0.3925   0.6265  
## Number of obs: 32, groups:  sitio:lugar, 8; lugar, 2
## 
## Fixed effects:
##               Estimate Std. Error t value
## (Intercept) -1.448e-15  6.399e-01       0
summary(fit9)
## Linear mixed model fit by REML ['lmerMod']
## Formula: humedad.suelo ~ 1 + (1 | lugar/sitio)
## 
## REML criterion at convergence: 77.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.22708 -0.57634  0.09505  0.75063  1.84102 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  sitio:lugar (Intercept) 0.2425   0.4925  
##  lugar       (Intercept) 0.6126   0.7827  
##  Residual                0.4648   0.6817  
## Number of obs: 32, groups:  sitio:lugar, 8; lugar, 2
## 
## Fixed effects:
##              Estimate Std. Error t value
## (Intercept) 4.194e-15  5.926e-01       0
summary(fit10)
## Linear mixed model fit by REML ['lmerMod']
## Formula: temp.org ~ 1 + (1 | lugar/sitio)
## 
## REML criterion at convergence: 85.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.4984 -0.5400 -0.1636  0.1525  2.5861 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  sitio:lugar (Intercept) 0.0000   0.0000  
##  lugar       (Intercept) 0.4603   0.6784  
##  Residual                0.7624   0.8732  
## Number of obs: 32, groups:  sitio:lugar, 8; lugar, 2
## 
## Fixed effects:
##               Estimate Std. Error t value
## (Intercept) -3.328e-16  5.039e-01       0
summary(fit11)
## Linear mixed model fit by REML ['lmerMod']
## Formula: altura.veg ~ 1 + (1 | lugar/sitio)
## 
## REML criterion at convergence: 88
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.3630 -0.7004 -0.3106  0.6376  2.4500 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  sitio:lugar (Intercept) 0.04525  0.2127  
##  lugar       (Intercept) 0.29336  0.5416  
##  Residual                0.80772  0.8987  
## Number of obs: 32, groups:  sitio:lugar, 8; lugar, 2
## 
## Fixed effects:
##               Estimate Std. Error t value
## (Intercept) -5.065e-16  4.214e-01       0
summary(fit12)
## Linear mixed model fit by REML ['lmerMod']
## Formula: covertura ~ 1 + (1 | lugar/sitio)
## 
## REML criterion at convergence: 80
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.3475 -0.6238 -0.2472  0.4757  1.8662 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  sitio:lugar (Intercept) 0.5050   0.7106  
##  lugar       (Intercept) 0.1563   0.3954  
##  Residual                0.4632   0.6806  
## Number of obs: 32, groups:  sitio:lugar, 8; lugar, 2
## 
## Fixed effects:
##               Estimate Std. Error t value
## (Intercept) -2.053e-16  3.947e-01       0
#diferencias entre lugares
detach(campo4)
attach(campo3)
fit13=t.test(temp.suelo~lugar)
fit13
## 
##  Welch Two Sample t-test
## 
## data:  temp.suelo by lugar
## t = 0.47925, df = 25.694, p-value = 0.6358
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.219767  1.960912
## sample estimates:
## mean in group bosque mean in group paramo 
##            10.072292             9.701719
fit14=t.test(luz~lugar)
fit14
## 
##  Welch Two Sample t-test
## 
## data:  luz by lugar
## t = 4.2842, df = 16.296, p-value = 0.0005477
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   5.227039 15.436711
## sample estimates:
## mean in group bosque mean in group paramo 
##            15.508437             5.176563
fit15=t.test(ph~lugar)
fit15
## 
##  Welch Two Sample t-test
## 
## data:  ph by lugar
## t = 4.6865, df = 28.659, p-value = 6.214e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.4242842 1.0819658
## sample estimates:
## mean in group bosque mean in group paramo 
##             6.484375             5.731250
fit16=t.test(humedad.suelo~lugar)
fit16
## 
##  Welch Two Sample t-test
## 
## data:  humedad.suelo by lugar
## t = 4.1298, df = 26.364, p-value = 0.0003258
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.1110428 0.3308322
## sample estimates:
## mean in group bosque mean in group paramo 
##            0.7109375            0.4900000
fit17=t.test(temp.org~lugar)
fit17
## 
##  Welch Two Sample t-test
## 
## data:  temp.org by lugar
## t = 3.2648, df = 16.053, p-value = 0.00485
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  1.653811 7.773689
## sample estimates:
## mean in group bosque mean in group paramo 
##              6.84000              2.12625
fit18=t.test(altura.veg~lugar)
fit18
## 
##  Welch Two Sample t-test
## 
## data:  altura.veg by lugar
## t = -2.5949, df = 27.707, p-value = 0.01496
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -24.653322  -2.895657
## sample estimates:
## mean in group bosque mean in group paramo 
##             40.88698             54.66147
fit19=t.test(covertura~lugar)
fit19
## 
##  Welch Two Sample t-test
## 
## data:  covertura by lugar
## t = -2.3974, df = 24.06, p-value = 0.02463
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -38.80903  -2.90347
## sample estimates:
## mean in group bosque mean in group paramo 
##             29.14375             50.00000