x + y + z = 6
2y + 5z = −4
2x + 5y − z = 27
The matrix form of the equation is :
\[
A u = v
\]
where,
\[A=\left(\begin{array}{ccc}
1 &1 & 1\\
0&2&5\\
2&5&1\\
\end{array}\right)\\
u=\left(\begin{array}{c}
x\\
y\\
z\\
\end{array}\right)\\
v=\left(\begin{array}{c}
x\\
y\\
z\\
\end{array}\right)
\]
The solution of the above equation in matrix form is given by,
\[ u =A^{-1}v \]
How to tackle situtations when det|A|=0. Will inverse of A exist?
library(matlib)
cat("A=")
## A=
A <- matrix( c(1, 1, 1,0,2,5,2,5,-1),nrow=3, byrow=TRUE)
(A)
## [,1] [,2] [,3]
## [1,] 1 1 1
## [2,] 0 2 5
## [3,] 2 5 -1
cat("inverse A=")
## inverse A=
(AI<-inv(A))
## [,1] [,2] [,3]
## [1,] 1.2857143 -0.2857143 -0.1428571
## [2,] -0.4761905 0.1428571 0.2380952
## [3,] 0.1904762 0.1428571 -0.0952381
vec=matrix(c(6,-4,27),nrow=3, byrow=TRUE)
(vec)
## [,1]
## [1,] 6
## [2,] -4
## [3,] 27
u<-AI%*%vec
x<-u[1]
y<-u[2]
z<-u[3]
s<-sprintf("x=%6.3f ,y=%6.3f ,z=%6.3f",x,y,z)
cat(s)
## x= 5.000 ,y= 3.000 ,z=-2.000
cat("Transpose of A=")
## Transpose of A=
(A.t<-t(A))
## [,1] [,2] [,3]
## [1,] 1 0 2
## [2,] 1 2 5
## [3,] 1 5 -1
cat("inverse A multiplied by A=")
## inverse A multiplied by A=
B<-AI%*%A
(round(B))
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
Let us now look at the following reaction
We can write the reaction velocity v \[ v=\left(\begin{array}{c} v_1\\ v_2\\ v_3\\ \end{array}\right) \]
concentration by : \[ u=\left(\begin{array}{c} A\\ B\\ C\\ \end{array}\right) \]
The following rate relation follows:
As the conservation equation A+B+C= constant , holds good i.e.,
As the equation (2) implies reduced dimensionality the 3X3 matrix B in equation (3) has zero determinant.
Reduce \(\alpha\) to a 2D matrix \(\beta\) and write down its explicit form.
where,
\[
\beta=\left(\begin{array}{cc}
-k_{-1}-k_{-3}-k_3 & k_{-1} -k_3 \\
k_1- k_{-2} & k_{-1}-k_2-k_{-2}\\
\end{array}\right)\\
\]
Plz solve . Show that the eigen value of the above matrix is always real and negative (the system will reach equilibrium without ocsillation)provided the following is true : \[ k_1.k_2.k_3=k_{-1}.k_{-2}.k_{-3} \] In constrast show that pure osciilation will occur (eigen value of the rate matrix will be purely imaginary ) in case of classical SHM.
input t0 and y0.
input step size, h and the number of steps, n.
for j from 1 to n do
m = f (t0, y0)
y1 = y0 + h*m
t1 = t0 + h
Print t1 and y1
t0 = t1
y0 = y1
end
Let us assume that we deal with Logistic Equation
\[ \frac{dx}{dt}= rx (1-\frac{x}{K}) \] This equation can be used for studying growth dynamics of different biomasses ( plant,bacteria,fungi,fish). (See Gordon Model for open access fishery).
x=10.0
r=0.01
K=100.0
n=5000
tau=0.1
tmax=5000.0
t=0.1
s<-c(x)
tt<-c(t)
for (i in 1:n){
x<-x+tau*r*x*(1-x/K)
s<-c(s,x)
x
t<-t+tau
tt<-c(tt,t)
}
plot(tt,s,type='l',xlab="time",ylab="Biomass")