The objectives of this problem set is to orient you to a number of activities in R. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion name your final output .html file as: YourName_ANLY512-Section-Year-Semester.html and upload it to the “Problem Set 2” assignmenet on Moodle.
anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.data <- anscombe
fBasics() package!)colMeans(data[,1:4])
## x1 x2 x3 x4
## 9 9 9 9
colMeans(data[,5:8])
## y1 y2 y3 y4
## 7.500909 7.500909 7.500000 7.500909
var(data$x1)
## [1] 11
var(data$x2)
## [1] 11
var(data$x3)
## [1] 11
var(data$x4)
## [1] 11
var(data$y1)
## [1] 4.127269
var(data$y2)
## [1] 4.127629
var(data$y3)
## [1] 4.12262
var(data$y4)
## [1] 4.123249
library(fBasics)
## Warning: package 'fBasics' was built under R version 3.3.3
## Loading required package: timeDate
## Warning: package 'timeDate' was built under R version 3.3.3
## Loading required package: timeSeries
## Warning: package 'timeSeries' was built under R version 3.3.3
##
## Rmetrics Package fBasics
## Analysing Markets and calculating Basic Statistics
## Copyright (C) 2005-2014 Rmetrics Association Zurich
## Educational Software for Financial Engineering and Computational Science
## Rmetrics is free software and comes with ABSOLUTELY NO WARRANTY.
## https://www.rmetrics.org --- Mail to: info@rmetrics.org
correlationTest(data$x1, data$y1)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8164
## STATISTIC:
## t: 4.2415
## P VALUE:
## Alternative Two-Sided: 0.00217
## Alternative Less: 0.9989
## Alternative Greater: 0.001085
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4244, 0.9507
## Less: -1, 0.9388
## Greater: 0.5113, 1
##
## Description:
## Mon Nov 13 23:14:02 2017
correlationTest(data$x2, data$y2)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8162
## STATISTIC:
## t: 4.2386
## P VALUE:
## Alternative Two-Sided: 0.002179
## Alternative Less: 0.9989
## Alternative Greater: 0.001089
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4239, 0.9506
## Less: -1, 0.9387
## Greater: 0.5109, 1
##
## Description:
## Mon Nov 13 23:14:02 2017
correlationTest(data$x3, data$y3)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8163
## STATISTIC:
## t: 4.2394
## P VALUE:
## Alternative Two-Sided: 0.002176
## Alternative Less: 0.9989
## Alternative Greater: 0.001088
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4241, 0.9507
## Less: -1, 0.9387
## Greater: 0.511, 1
##
## Description:
## Mon Nov 13 23:14:02 2017
correlationTest(data$x4, data$y4)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8165
## STATISTIC:
## t: 4.243
## P VALUE:
## Alternative Two-Sided: 0.002165
## Alternative Less: 0.9989
## Alternative Greater: 0.001082
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4246, 0.9507
## Less: -1, 0.9388
## Greater: 0.5115, 1
##
## Description:
## Mon Nov 13 23:14:02 2017
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.3.3
ggplot(data, aes(x=x1, y=y1)) +
geom_point(shape=1) +
ggtitle("Scatter_Plot between x1 and y1")
ggplot(data, aes(x=x2, y=y2)) +
geom_point(shape=1) +
ggtitle("Scatter_Plot between x2 and y2")
ggplot(data, aes(x=x3, y=y3)) +
geom_point(shape=1) +
ggtitle("Scatter_Plot between x3 and y3")
ggplot(data, aes(x=x4, y=y4)) +
geom_point(shape=1) +
ggtitle("Scatter_Plot between x4 and y4")
par(mfrow= c(2,2))
ggplot(data, aes(x=x1, y=y1)) +
geom_point(shape=20) +
ggtitle("Scatter_Plot between x1 and y1")
ggplot(data, aes(x=x2, y=y2)) +
geom_point(shape=20) +
ggtitle("Scatter_Plot between x2 and y2")
ggplot(data, aes(x=x3, y=y3)) +
geom_point(shape=20) +
ggtitle("Scatter_Plot between x3 and y3")
ggplot(data, aes(x=x4, y=y4)) +
geom_point(shape=20) +
ggtitle("Scatter_Plot between x4 and y4")
lm() function.linear_model_1 <- lm(data$x1~data$y1)
summary(linear_model_1)
##
## Call:
## lm(formula = data$x1 ~ data$y1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.6522 -1.5117 -0.2657 1.2341 3.8946
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.9975 2.4344 -0.410 0.69156
## data$y1 1.3328 0.3142 4.241 0.00217 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.019 on 9 degrees of freedom
## Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295
## F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
linear_model_2 <- lm(data$x2~data$y2)
summary(linear_model_2)
##
## Call:
## lm(formula = data$x2 ~ data$y2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8516 -1.4315 -0.3440 0.8467 4.2017
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.9948 2.4354 -0.408 0.69246
## data$y2 1.3325 0.3144 4.239 0.00218 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.02 on 9 degrees of freedom
## Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179
linear_model_3 <- lm(data$x3~data$y3)
summary(linear_model_3)
##
## Call:
## lm(formula = data$x3 ~ data$y3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9869 -1.3733 -0.0266 1.3200 3.2133
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.0003 2.4362 -0.411 0.69097
## data$y3 1.3334 0.3145 4.239 0.00218 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.019 on 9 degrees of freedom
## Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176
linear_model_4 <- lm(data$x4~data$y4)
summary(linear_model_4)
##
## Call:
## lm(formula = data$x4 ~ data$y4)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7859 -1.4122 -0.1853 1.4551 3.3329
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.0036 2.4349 -0.412 0.68985
## data$y4 1.3337 0.3143 4.243 0.00216 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.018 on 9 degrees of freedom
## Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297
## F-statistic: 18 on 1 and 9 DF, p-value: 0.002165
par(mfrow=c(2,2))
ggplot(data, aes(x=x1, y=y1)) +
geom_point(shape=20) +
geom_smooth(method = lm)+
ggtitle("Scatter_Plot between x1 and y1")
ggplot(data, aes(x=x2, y=y2)) +
geom_point(shape=20) +
geom_smooth(method = lm)+
ggtitle("Scatter_Plot between x2 and y2")
ggplot(data, aes(x=x3, y=y3)) +
geom_point(shape=20) +
geom_smooth(method = lm)+
ggtitle("Scatter_Plot between x3 and y3")
ggplot(data, aes(x=x4, y=y4)) +
geom_point(shape=20) +
geom_smooth(method = lm)+
ggtitle("Scatter_Plot between x4 and y4")
anova(linear_model_1)
Analysis of Variance Table
Response: data\(x1 Df Sum Sq Mean Sq F value Pr(>F) data\)y1 1 73.32 73.320 17.99 0.00217 ** Residuals 9 36.68 4.076
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(linear_model_2)
Analysis of Variance Table
Response: data\(x2 Df Sum Sq Mean Sq F value Pr(>F) data\)y2 1 73.287 73.287 17.966 0.002179 ** Residuals 9 36.713 4.079
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(linear_model_3)
Analysis of Variance Table
Response: data\(x3 Df Sum Sq Mean Sq F value Pr(>F) data\)y3 1 73.296 73.296 17.972 0.002176 ** Residuals 9 36.704 4.078
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(linear_model_4)
Analysis of Variance Table
Response: data\(x4 Df Sum Sq Mean Sq F value Pr(>F) data\)y4 1 73.338 73.338 18.003 0.002165 ** Residuals 9 36.662 4.074
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1