Combine Adults and Kids for graphs
a=1
adult.SB.expt1.sum$AgeGroup = "Adults"
child.SB.expt1.sum$AgeGroup = "Children"
combine_graph = bind_rows(adult.SB.expt1.sum,child.SB.expt1.sum)
combine_graph$AgeGroup = ordered(combine_graph$AgeGroup, levels = c("Children","Adults"))
kable(combine_graph)
| Unambiguous |
0.0156250 |
0.0000000 |
0.0472656 |
Adults |
| Polysemy |
0.8906250 |
0.7500000 |
1.0000000 |
Adults |
| Material versus Object |
0.3906250 |
0.1875000 |
0.6250000 |
Adults |
| Material vs. Object (Replication) |
0.5625000 |
0.3750000 |
0.7347656 |
Adults |
| Expt.4 Homophone |
0.2031250 |
0.0781250 |
0.3437500 |
Adults |
| Unambiguous |
0.2720588 |
0.1468750 |
0.4044118 |
Children |
| Polysemy |
0.7045455 |
0.5681818 |
0.8257576 |
Children |
| Material versus Object |
0.8333333 |
0.7121212 |
0.9393939 |
Children |
| Expt.4 Homophone |
0.3560606 |
0.2196970 |
0.4850379 |
Children |
combine_graph$condition_label = factor(combine_graph$condition_label, levels = levels(combine_graph$condition_label), labels = gsub(" ", "\n", levels(combine_graph$condition_label), fixed = TRUE))
ggplot(combine_graph, aes(condition_label, response.mean, fill = condition_label))+
geom_bar(stat="identity")+
facet_grid(AgeGroup~.)+
#geom_text(data = combine_graph, aes(y = response.mean,label = condition_label), angle = 30, colour = "white",fontface="bold",size = 5)+ #,nudge_y = -combine_graph$response.mean/1.8
geom_errorbar(data= combine_graph, aes(ymax = ifelse(response.mean > 0.5,response.ci.low,response.ci.high),
ymin = response.mean
), width=0, position = dodge, size = 1.1) +
ylim(c(0,1))+
ylab("Proportion choosing material-match object")+
geom_hline(yintercept = 0.5, lty = 2)+
theme_cowplot()+
theme(axis.title.x=element_blank(),
axis.ticks.x=element_blank())+ #axis.text.x=element_blank(),
guides(fill=FALSE)+
scale_fill_brewer(palette="Set1")

ggplot(combine_graph, aes(condition_label, response.mean, fill = condition_label))+
geom_bar(stat="identity")+
facet_grid(AgeGroup~.)+
#geom_text(data = combine_graph, aes(y = response.mean,label = condition_label), angle = 30, colour = "white",fontface="bold",size = 5)+ #,nudge_y = -combine_graph$response.mean/1.8
geom_errorbar(data= combine_graph, aes(ymax = ifelse(response.mean > 0.5,response.ci.low,response.ci.high),
ymin = response.mean
), width=0, position = dodge, size = 1.1,color = c("black", "white","white","black",
"black","white","black","black","white")) +
ylim(c(0,1))+
ylab("Proportion choosing material-match object")+
geom_hline(yintercept = 0.5, lty = 2)+
theme_cowplot()+
theme(axis.title.x=element_blank(),
axis.ticks.x=element_blank())+ #axis.text.x=element_blank(),
guides(fill=FALSE)+
scale_fill_grey()

child.SB.expt1.sum <- child.SB.expt1 %>%
left_join(labels, by = "condition") %>%
filter(Exclude == "no",type == "test", condition != 4) %>%
select(condition_label,subject,age.yrs,response) %>%
mutate(age_group = as.character(floor(age.yrs))) %>% #, response = -1*(response-1)) %>%
group_by(age_group,condition_label,subject)%>%
summarise(response.m = mean(response,na.rm = T)) %>%
group_by(age_group,condition_label) %>%
summarise(response.mean = mean(response.m,na.rm = T), response.ci.low = ci.low(response.m),response.ci.high = ci.high(response.m))
adult.SB.expt1.sum$age_group = "Adults"
combine_graph = bind_rows(adult.SB.expt1.sum,child.SB.expt1.sum)
combine_graph$AgeGroup = ordered(combine_graph$AgeGroup, levels = c("Children","Adults"))
ggplot(combine_graph, aes(condition_label, response.mean, fill = condition_label))+
geom_bar(stat="identity")+
facet_grid(age_group~.)+
geom_errorbar(data= combine_graph, aes(,ymax = ifelse(response.mean > 0.5,response.ci.low,response.ci.high),
ymin = response.mean
), width=0, position = dodge, size = 1.1,color = c("black", "white","white","black",
"black","white","white","black",
"black","white","black","black","white")) +
ylim(c(0,1))+
ylab("Proportion choosing material-match object")+
xlab("Condition") +
geom_hline(yintercept = 0.5, lty = 2)+
theme_cowplot()+
theme(axis.title.x=element_blank(),
axis.ticks.x=element_blank())+ #axis.text.x=element_blank(),
guides(fill=FALSE)+
scale_fill_grey()

polysemy_effect <- glmer(response ~ condition_label + (1|subject),
data = subset(child.SB.expt1.analysis, condition %in% c(1,2,3)),
family = "binomial", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
polysemy_effect_bayes_continuous_age <- brm(response ~ scale(age.mos)*condition_label + (1|subject),
data = subset(child.SB.expt1.analysis, condition %in% c(1,2,3)),
family = "bernoulli", cores = 4, prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
polysemy_effect_bayes_continuous_age_order <- brm(response ~ scale(age.mos)*condition_label*scale(seq) + (1|subject),
data = subset(child.SB.expt1.analysis, condition %in% c(1,2,3)),
family = "bernoulli", cores = 4, prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
polysemy_effect_bayes_continuous_age_list <- brm(response ~ scale(age.mos)*condition_label*as.factor(order) + (1|subject),
data = subset(child.SB.expt1.analysis, condition %in% c(1,2,3)),
family = "bernoulli", cores = 4, prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
polysemy_effect_bayes <- brm(response ~ age_group*condition_label + (1|subject),
data = subset(child.SB.expt1.analysis, condition %in% c(1,2,3)),
family = "bernoulli", cores = 4, prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
simpler_polysemy_effect_bayes <- brm(response ~ condition_label + (1|subject),
data = subset(child.SB.expt1.analysis, condition %in% c(1,2,3)),
family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
##
## Chain 1, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 1.13933 seconds (Warm-up)
## 0.741681 seconds (Sampling)
## 1.88101 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
##
## Chain 2, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 1.07898 seconds (Warm-up)
## 0.741469 seconds (Sampling)
## 1.82045 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
##
## Chain 3, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 1.07267 seconds (Warm-up)
## 0.739548 seconds (Sampling)
## 1.81222 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
##
## Chain 4, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 1.02698 seconds (Warm-up)
## 0.741727 seconds (Sampling)
## 1.76871 seconds (Total)
simpler_polysemy_effect_bayes_three <- brm(response ~ condition_label + (1|subject),
data = subset(child.SB.expt1.analysis, condition %in% c(1,2,3) & age_group == "3"),
family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
##
## Chain 1, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.473025 seconds (Warm-up)
## 0.401014 seconds (Sampling)
## 0.874039 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
##
## Chain 2, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.432778 seconds (Warm-up)
## 0.436537 seconds (Sampling)
## 0.869315 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
##
## Chain 3, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.467644 seconds (Warm-up)
## 0.401939 seconds (Sampling)
## 0.869583 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
##
## Chain 4, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.462133 seconds (Warm-up)
## 0.400683 seconds (Sampling)
## 0.862816 seconds (Total)
simpler_polysemy_effect_bayes_four <- brm(response ~ condition_label + (1|subject),
data = subset(child.SB.expt1.analysis, condition %in% c(1,2,3) & age_group == "4"),
family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
##
## Chain 1, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.499346 seconds (Warm-up)
## 0.421465 seconds (Sampling)
## 0.920811 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
##
## Chain 2, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.494148 seconds (Warm-up)
## 0.418962 seconds (Sampling)
## 0.91311 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
##
## Chain 3, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.483719 seconds (Warm-up)
## 0.421809 seconds (Sampling)
## 0.905528 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
##
## Chain 4, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.511222 seconds (Warm-up)
## 0.415876 seconds (Sampling)
## 0.927098 seconds (Total)
adult_polysemy_effect_bayes <- brm(response ~ condition_label + (1|subject),
data = subset(adult.SB.expt1.analysis,condition %in% c(1,2,3)),
family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
##
## Chain 1, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.453663 seconds (Warm-up)
## 0.40218 seconds (Sampling)
## 0.855843 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
##
## Chain 2, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.463421 seconds (Warm-up)
## 0.401874 seconds (Sampling)
## 0.865295 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
##
## Chain 3, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.477148 seconds (Warm-up)
## 0.402246 seconds (Sampling)
## 0.879394 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
##
## Chain 4, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.465518 seconds (Warm-up)
## 0.40084 seconds (Sampling)
## 0.866358 seconds (Total)
adult_polysemy_effect_bayes_seq <- brm(response ~ condition_label*scale(seq) + (1|subject),
data = subset(adult.SB.expt1.analysis,condition %in% c(1,2,3)),
family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
##
## Chain 1, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.525102 seconds (Warm-up)
## 0.429644 seconds (Sampling)
## 0.954746 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
##
## Chain 2, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.527144 seconds (Warm-up)
## 0.423504 seconds (Sampling)
## 0.950648 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
##
## Chain 3, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.519414 seconds (Warm-up)
## 0.424654 seconds (Sampling)
## 0.944068 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
##
## Chain 4, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.522849 seconds (Warm-up)
## 0.424964 seconds (Sampling)
## 0.947813 seconds (Total)
adult_polysemy_effect_bayes_list <- brm(response ~ condition_label*as.factor(order) + (1|subject),
data = subset(adult.SB.expt1.analysis,condition %in% c(1,2,3)),
family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
##
## Chain 1, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.789854 seconds (Warm-up)
## 0.745773 seconds (Sampling)
## 1.53563 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
##
## Chain 2, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.798516 seconds (Warm-up)
## 0.699009 seconds (Sampling)
## 1.49752 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
##
## Chain 3, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.818017 seconds (Warm-up)
## 0.723092 seconds (Sampling)
## 1.54111 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
##
## Chain 4, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.791517 seconds (Warm-up)
## 0.764924 seconds (Sampling)
## 1.55644 seconds (Total)
unambiguous_kids <- brm(response ~ 1 + (1|subject),
data = subset(child.SB.expt1.analysis, condition_label %in% c("Unambiguous") ),
family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
##
## Chain 1, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.211951 seconds (Warm-up)
## 0.220544 seconds (Sampling)
## 0.432495 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
##
## Chain 2, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.21605 seconds (Warm-up)
## 0.223849 seconds (Sampling)
## 0.439899 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
##
## Chain 3, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.227643 seconds (Warm-up)
## 0.226658 seconds (Sampling)
## 0.454301 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
##
## Chain 4, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.219604 seconds (Warm-up)
## 0.244296 seconds (Sampling)
## 0.4639 seconds (Total)
polysemy_kids <- brm(response ~ 1 + (1|subject),
data = subset(child.SB.expt1.analysis, condition_label %in% c("Polysemy") ),
family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
##
## Chain 1, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.223052 seconds (Warm-up)
## 0.315162 seconds (Sampling)
## 0.538214 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
##
## Chain 2, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.229201 seconds (Warm-up)
## 0.22927 seconds (Sampling)
## 0.458471 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
##
## Chain 3, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.213874 seconds (Warm-up)
## 0.265665 seconds (Sampling)
## 0.479539 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
##
## Chain 4, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.213161 seconds (Warm-up)
## 0.22815 seconds (Sampling)
## 0.441311 seconds (Total)
material_kids <- brm(response ~ 1 + (1|subject),
data = subset(child.SB.expt1.analysis, condition %in% c("3") ),
family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
##
## Chain 1, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.250339 seconds (Warm-up)
## 0.223651 seconds (Sampling)
## 0.47399 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
##
## Chain 2, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.255545 seconds (Warm-up)
## 0.225745 seconds (Sampling)
## 0.48129 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
##
## Chain 3, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.240103 seconds (Warm-up)
## 0.240333 seconds (Sampling)
## 0.480436 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
##
## Chain 4, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.240794 seconds (Warm-up)
## 0.227913 seconds (Sampling)
## 0.468707 seconds (Total)
unambiguous_adults <- brm(response ~ 1 + (1|subject),
data = subset(adult.SB.expt1.analysis, condition_label %in% c("Unambiguous") ),
family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
##
## Chain 1, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.116738 seconds (Warm-up)
## 0.134573 seconds (Sampling)
## 0.251311 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
##
## Chain 2, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.131343 seconds (Warm-up)
## 0.100968 seconds (Sampling)
## 0.232311 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
##
## Chain 3, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.111056 seconds (Warm-up)
## 0.108071 seconds (Sampling)
## 0.219127 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
##
## Chain 4, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.129158 seconds (Warm-up)
## 0.083402 seconds (Sampling)
## 0.21256 seconds (Total)
polysemy_adults <- brm(response ~ 1 + (1|subject),
data = subset(adult.SB.expt1.analysis, condition_label %in% c("Polysemy") ),
family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
##
## Chain 1, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.123217 seconds (Warm-up)
## 0.128399 seconds (Sampling)
## 0.251616 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
##
## Chain 2, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.121001 seconds (Warm-up)
## 0.141564 seconds (Sampling)
## 0.262565 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
##
## Chain 3, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.115453 seconds (Warm-up)
## 0.12667 seconds (Sampling)
## 0.242123 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
##
## Chain 4, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.126507 seconds (Warm-up)
## 0.140208 seconds (Sampling)
## 0.266715 seconds (Total)
material_adults <- brm(response ~ 1 + (1|subject),
data = subset(adult.SB.expt1.analysis, condition %in% c("3") ),
family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
##
## Chain 1, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.11239 seconds (Warm-up)
## 0.124081 seconds (Sampling)
## 0.236471 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
##
## Chain 2, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.109884 seconds (Warm-up)
## 0.087507 seconds (Sampling)
## 0.197391 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
##
## Chain 3, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.113019 seconds (Warm-up)
## 0.125553 seconds (Sampling)
## 0.238572 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
##
## Chain 4, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.114294 seconds (Warm-up)
## 0.09776 seconds (Sampling)
## 0.212054 seconds (Total)
material_adults_rep <- brm(response ~ 1 + (1|subject),
data = subset(adult.SB.expt1.analysis, condition %in% c("6") ),
family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
##
## Chain 1, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.109237 seconds (Warm-up)
## 0.084816 seconds (Sampling)
## 0.194053 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
##
## Chain 2, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.106357 seconds (Warm-up)
## 0.0831 seconds (Sampling)
## 0.189457 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
##
## Chain 3, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.108738 seconds (Warm-up)
## 0.078465 seconds (Sampling)
## 0.187203 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
##
## Chain 4, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.104312 seconds (Warm-up)
## 0.073941 seconds (Sampling)
## 0.178253 seconds (Total)
homophone_kids <- brm(response ~ 1 + (1|subject),
data = subset(child.SB.expt1.analysis, condition %in% c("5") ),
family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
##
## Chain 1, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.198203 seconds (Warm-up)
## 0.239998 seconds (Sampling)
## 0.438201 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
##
## Chain 2, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.204675 seconds (Warm-up)
## 0.259975 seconds (Sampling)
## 0.46465 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
##
## Chain 3, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.209031 seconds (Warm-up)
## 0.277998 seconds (Sampling)
## 0.487029 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
##
## Chain 4, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.200198 seconds (Warm-up)
## 0.282878 seconds (Sampling)
## 0.483076 seconds (Total)
homophone_adults <- brm(response ~ 1 + (1|subject),
data = subset(adult.SB.expt1.analysis, condition %in% c("5") ),
family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
##
## Chain 1, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.128861 seconds (Warm-up)
## 0.13357 seconds (Sampling)
## 0.262431 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
##
## Chain 2, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.129099 seconds (Warm-up)
## 0.13464 seconds (Sampling)
## 0.263739 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
##
## Chain 3, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.118959 seconds (Warm-up)
## 0.141252 seconds (Sampling)
## 0.260211 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
##
## Chain 4, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.115287 seconds (Warm-up)
## 0.139874 seconds (Sampling)
## 0.255161 seconds (Total)
homophone_kids_seq <- brm(response ~ 1 + scale(seq)+ (1|subject),
data = subset(child.SB.expt1.analysis, condition %in% c("5") ),
family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
##
## Chain 1, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.256863 seconds (Warm-up)
## 0.21525 seconds (Sampling)
## 0.472113 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
##
## Chain 2, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.271312 seconds (Warm-up)
## 0.360077 seconds (Sampling)
## 0.631389 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
##
## Chain 3, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.257271 seconds (Warm-up)
## 0.368892 seconds (Sampling)
## 0.626163 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
##
## Chain 4, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.260794 seconds (Warm-up)
## 0.389384 seconds (Sampling)
## 0.650178 seconds (Total)
homophone_adults_seq <- brm(response ~ 1 + scale(seq)+ (1|subject),
data = subset(adult.SB.expt1.analysis, condition %in% c("5") ),
family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
##
## Chain 1, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.152121 seconds (Warm-up)
## 0.179762 seconds (Sampling)
## 0.331883 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
##
## Chain 2, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.294968 seconds (Warm-up)
## 0.175906 seconds (Sampling)
## 0.470874 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
##
## Chain 3, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.15975 seconds (Warm-up)
## 0.179705 seconds (Sampling)
## 0.339455 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
##
## Chain 4, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.159926 seconds (Warm-up)
## 0.178036 seconds (Sampling)
## 0.337962 seconds (Total)
homophone_kids_list <- brm(response ~ 1 + as.factor(order)+ (1|subject),
data = subset(child.SB.expt1.analysis, condition %in% c("5") ),
family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
##
## Chain 1, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.371601 seconds (Warm-up)
## 0.310795 seconds (Sampling)
## 0.682396 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
##
## Chain 2, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.364941 seconds (Warm-up)
## 0.328691 seconds (Sampling)
## 0.693632 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
##
## Chain 3, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.363894 seconds (Warm-up)
## 0.323384 seconds (Sampling)
## 0.687278 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
##
## Chain 4, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.347309 seconds (Warm-up)
## 0.318113 seconds (Sampling)
## 0.665422 seconds (Total)
homophone_adults_list <- brm(response ~ 1 +as.factor(order)+ scale(seq)+ (1|subject),
data = subset(adult.SB.expt1.analysis, condition %in% c("5") ),
family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
##
## Chain 1, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.195347 seconds (Warm-up)
## 0.191072 seconds (Sampling)
## 0.386419 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
##
## Chain 2, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.198232 seconds (Warm-up)
## 0.194147 seconds (Sampling)
## 0.392379 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
##
## Chain 3, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.187891 seconds (Warm-up)
## 0.18924 seconds (Sampling)
## 0.377131 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
##
## Chain 4, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.200586 seconds (Warm-up)
## 0.183327 seconds (Sampling)
## 0.383913 seconds (Total)
## Warning: Rows containing NAs were excluded from the model
## Compiling the C++ model
## Start sampling
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
##
## Chain 1, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 1.02481 seconds (Warm-up)
## 0.743883 seconds (Sampling)
## 1.76869 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
##
## Chain 2, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 1.00774 seconds (Warm-up)
## 0.740554 seconds (Sampling)
## 1.7483 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
##
## Chain 3, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 1.03052 seconds (Warm-up)
## 0.751002 seconds (Sampling)
## 1.78152 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
##
## Chain 4, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 1.01232 seconds (Warm-up)
## 0.743471 seconds (Sampling)
## 1.75579 seconds (Total)
## Compiling the C++ model
## Start sampling
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
##
## Chain 1, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.439476 seconds (Warm-up)
## 0.399119 seconds (Sampling)
## 0.838595 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
##
## Chain 2, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.416329 seconds (Warm-up)
## 0.395886 seconds (Sampling)
## 0.812215 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
##
## Chain 3, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.433602 seconds (Warm-up)
## 0.552499 seconds (Sampling)
## 0.986101 seconds (Total)
##
##
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
##
## Chain 4, Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4, Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4, Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4, Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4, Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%] (Sampling)
## Elapsed Time: 0.424714 seconds (Warm-up)
## 0.716984 seconds (Sampling)
## 1.1417 seconds (Total)
a=1
kable(summary(polysemy_effect)$coef,
caption = "GLMER model")
GLMER model
| (Intercept) |
-7.00439 |
0.0007121 |
-9836.576 |
0 |
| condition_labelPolysemy |
13.75911 |
0.0007121 |
19322.621 |
0 |
| condition_labelMaterial versus Object |
15.01090 |
0.0007121 |
21080.465 |
0 |
kable(convert_stan_to_dataframe(polysemy_effect_bayes_continuous_age),
caption = "Continuous Age Bayesian model")
Continuous Age Bayesian model
| Intercept |
-1.6998709 |
0.6469575 |
-3.0059335 |
-0.4610000 |
1757.460 |
1.000891 |
* |
| scaleage.mos |
-0.2612191 |
0.6201771 |
-1.4911206 |
0.9479904 |
1597.518 |
1.001659 |
- |
| condition_labelPolysemy |
3.5114542 |
0.9024642 |
1.7221345 |
5.3222225 |
1819.649 |
1.000481 |
* |
| condition_labelMaterialversusObject |
5.0811228 |
0.9905836 |
3.2078876 |
7.0907123 |
1989.226 |
1.000463 |
* |
| scaleage.mos:condition_labelPolysemy |
1.2613814 |
0.8557599 |
-0.4291301 |
2.9629697 |
1659.341 |
1.000986 |
- |
| scaleage.mos:condition_labelMaterialversusObject |
0.5552364 |
0.9558591 |
-1.3029083 |
2.4353371 |
1667.134 |
1.002386 |
- |
kable(convert_stan_to_dataframe(polysemy_effect_bayes),
caption = "Categorical Age Bayesian model")
Categorical Age Bayesian model
| Intercept |
-1.3947931 |
0.7839043 |
-2.9537064 |
0.1216951 |
1301.738 |
1.004244 |
- |
| age_group4 |
-0.7785081 |
1.0093151 |
-2.7522025 |
1.1466221 |
1156.688 |
1.005525 |
- |
| condition_labelPolysemy |
2.2788982 |
1.0716646 |
0.1895725 |
4.4288276 |
1125.985 |
1.004302 |
* |
| condition_labelMaterialversusObject |
4.2302808 |
1.0956463 |
2.1067321 |
6.4080651 |
1445.581 |
1.003857 |
* |
| age_group4:condition_labelPolysemy |
3.0078022 |
1.4396845 |
0.2484581 |
5.8243139 |
1430.583 |
1.003305 |
* |
| age_group4:condition_labelMaterialversusObject |
2.0208103 |
1.4581765 |
-0.8320497 |
4.9207661 |
1330.140 |
1.003582 |
- |
kable(convert_stan_to_dataframe(polysemy_effect_bayes_continuous_age_order),
caption = "Continuous Age plus effect of item order Bayesian model")
Continuous Age plus effect of item order Bayesian model
| Intercept |
-1.7175983 |
0.6759117 |
-3.0480584 |
-0.3771064 |
1758.784 |
1.0025077 |
* |
| scaleage.mos |
-0.2800654 |
0.6515267 |
-1.5261737 |
1.0277616 |
1703.326 |
1.0019588 |
- |
| condition_labelPolysemy |
3.6460990 |
0.9529432 |
1.8062331 |
5.5978533 |
1852.984 |
1.0028809 |
* |
| condition_labelMaterialversusObject |
5.2963171 |
1.0014131 |
3.3746439 |
7.3011070 |
2353.708 |
0.9996053 |
* |
| scaleseq |
-0.4160170 |
0.3192030 |
-1.0448547 |
0.2052267 |
2495.381 |
0.9998088 |
- |
| scaleage.mos:condition_labelPolysemy |
1.3874551 |
0.9091499 |
-0.3631011 |
3.1478393 |
1724.682 |
1.0013477 |
- |
| scaleage.mos:condition_labelMaterialversusObject |
0.6174986 |
0.9928104 |
-1.3230234 |
2.5650410 |
1985.724 |
1.0008726 |
- |
| scaleage.mos:scaleseq |
0.2680796 |
0.3344675 |
-0.3697947 |
0.9407333 |
2833.816 |
1.0008771 |
- |
| condition_labelPolysemy:scaleseq |
0.7752601 |
0.4523064 |
-0.0970650 |
1.6706994 |
2907.862 |
1.0002956 |
- |
| condition_labelMaterialversusObject:scaleseq |
0.0290829 |
0.5217127 |
-1.0108081 |
1.0643365 |
3159.125 |
1.0003019 |
- |
| scaleage.mos:condition_labelPolysemy:scaleseq |
0.0156892 |
0.4424374 |
-0.8729618 |
0.9019794 |
2936.119 |
1.0027406 |
- |
| scaleage.mos:condition_labelMaterialversusObject:scaleseq |
-0.7079933 |
0.5225072 |
-1.7543376 |
0.2948526 |
3373.595 |
0.9996036 |
- |
kable(convert_stan_to_dataframe(polysemy_effect_bayes_continuous_age_list),
caption = "Continuous Age plus effect of List Bayesian model")
Continuous Age plus effect of List Bayesian model
| Intercept |
-1.1013612 |
0.9306761 |
-2.9592635 |
0.7092786 |
1583.841 |
1.0029905 |
- |
| scaleage.mos |
-0.1288249 |
0.8535806 |
-1.8057609 |
1.5371031 |
1574.579 |
1.0015831 |
- |
| condition_labelPolysemy |
3.8960288 |
1.1844296 |
1.5986466 |
6.2066365 |
1978.910 |
1.0015370 |
* |
| condition_labelMaterialversusObject |
4.1714771 |
1.2613243 |
1.7979790 |
6.7164369 |
1907.291 |
1.0030591 |
* |
| as.factororder2 |
0.2663181 |
1.2501293 |
-2.2635858 |
2.7482218 |
2174.839 |
1.0003644 |
- |
| as.factororder3 |
-1.9289152 |
1.3015284 |
-4.5978144 |
0.5823471 |
1513.234 |
1.0013690 |
- |
| as.factororder4 |
-0.5591404 |
1.3287323 |
-3.1714489 |
2.0463075 |
1617.316 |
1.0016575 |
- |
| scaleage.mos:condition_labelPolysemy |
1.5918185 |
1.1851727 |
-0.6837457 |
3.9970124 |
1615.424 |
1.0025434 |
- |
| scaleage.mos:condition_labelMaterialversusObject |
1.0037313 |
1.2061505 |
-1.3177059 |
3.3801183 |
1955.325 |
1.0003120 |
- |
| scaleage.mos:as.factororder2 |
-1.0956829 |
1.2285334 |
-3.5679940 |
1.2375705 |
2195.687 |
0.9996146 |
- |
| scaleage.mos:as.factororder3 |
-0.9754109 |
1.3205074 |
-3.6189035 |
1.6363170 |
1896.412 |
1.0026604 |
- |
| scaleage.mos:as.factororder4 |
1.2181224 |
1.3110295 |
-1.3470644 |
3.7846310 |
1879.957 |
1.0011565 |
- |
| condition_labelPolysemy:as.factororder2 |
-0.2821910 |
1.6801840 |
-3.5132537 |
3.0518774 |
2537.922 |
1.0010979 |
- |
| condition_labelMaterialversusObject:as.factororder2 |
1.7631593 |
1.8320106 |
-1.7709417 |
5.5097367 |
3100.713 |
1.0001597 |
- |
| condition_labelPolysemy:as.factororder3 |
0.6607266 |
1.6580097 |
-2.6224383 |
3.8674786 |
2036.441 |
1.0027021 |
- |
| condition_labelMaterialversusObject:as.factororder3 |
1.7250091 |
1.6697223 |
-1.6085651 |
5.0082231 |
2275.106 |
1.0017593 |
- |
| condition_labelPolysemy:as.factororder4 |
-1.9104601 |
1.6881953 |
-5.2361741 |
1.3349228 |
2381.447 |
1.0016507 |
- |
| condition_labelMaterialversusObject:as.factororder4 |
3.2021852 |
1.9236143 |
-0.4935752 |
7.0814173 |
2978.430 |
1.0004707 |
- |
| scaleage.mos:condition_labelPolysemy:as.factororder2 |
0.3578286 |
1.6096271 |
-2.8514888 |
3.5924277 |
2229.123 |
0.9999696 |
- |
| scaleage.mos:condition_labelMaterialversusObject:as.factororder2 |
-1.7845794 |
1.8761161 |
-5.5621365 |
1.9079806 |
3085.593 |
1.0001996 |
- |
| scaleage.mos:condition_labelPolysemy:as.factororder3 |
-0.6506507 |
1.7609547 |
-4.0460049 |
2.7563642 |
2396.873 |
1.0009213 |
- |
| scaleage.mos:condition_labelMaterialversusObject:as.factororder3 |
0.5109298 |
1.7020821 |
-2.7880974 |
3.9142093 |
2486.210 |
1.0001955 |
- |
| scaleage.mos:condition_labelPolysemy:as.factororder4 |
0.4641506 |
1.7130776 |
-2.7925852 |
3.9302908 |
2309.636 |
1.0010673 |
- |
| scaleage.mos:condition_labelMaterialversusObject:as.factororder4 |
-0.8148095 |
1.7471254 |
-4.1354795 |
2.6464533 |
2570.208 |
0.9998571 |
- |
kable(convert_stan_to_dataframe(simpler_polysemy_effect_bayes),
caption = "Simpler Bayesian model")
Simpler Bayesian model
| Intercept |
-1.658406 |
0.6446640 |
-2.967773 |
-0.4634405 |
1536.899 |
1.0018575 |
* |
| condition_labelPolysemy |
3.420210 |
0.8938251 |
1.755651 |
5.2792661 |
1662.583 |
0.9998583 |
* |
| condition_labelMaterialversusObject |
4.975715 |
0.9513267 |
3.212356 |
6.8924837 |
1858.110 |
1.0010043 |
* |
kable(convert_stan_to_dataframe(unambiguous_kids),
caption = "Unambiguous Control Condition Kids Bayesian model")
Unambiguous Control Condition Kids Bayesian model
| Intercept |
-2.048691 |
0.6544722 |
-3.459115 |
-0.907049 |
2456.031 |
0.9994982 |
* |
kable(convert_stan_to_dataframe(polysemy_kids),
caption = "Polysemy Condition Kids Bayesian model")
Polysemy Condition Kids Bayesian model
| Intercept |
1.755284 |
0.5997693 |
0.6580427 |
3.026568 |
2493.183 |
1.001573 |
* |
kable(convert_stan_to_dataframe(material_kids),
caption = "Material vs. Object Condition Kids Bayesian model")
Material vs. Object Condition Kids Bayesian model
| Intercept |
3.540103 |
0.8498518 |
2.095777 |
5.414366 |
2666.097 |
0.9996351 |
* |
kable(convert_stan_to_dataframe(simpler_polysemy_effect_bayes_three),
caption = "Simpler Bayesian model for three-year-olds")
Simpler Bayesian model for three-year-olds
| Intercept |
-0.8519557 |
0.7276756 |
-2.2723227 |
0.571773 |
2490.286 |
1.002322 |
- |
| condition_labelPolysemy |
1.4760780 |
0.9930959 |
-0.4638941 |
3.439269 |
2412.286 |
1.001575 |
- |
| condition_labelMaterialversusObject |
3.2538791 |
1.0680840 |
1.1800836 |
5.314217 |
2264.712 |
1.003143 |
* |
kable(convert_stan_to_dataframe(simpler_polysemy_effect_bayes_four),
caption = "Simpler Bayesian model for four-year-olds")
Simpler Bayesian model for four-year-olds
| Intercept |
-1.663656 |
0.7919165 |
-3.266265 |
-0.0910843 |
2521.875 |
1.0006280 |
* |
| condition_labelPolysemy |
4.389636 |
1.1490809 |
2.125471 |
6.7088454 |
3034.897 |
1.0003714 |
* |
| condition_labelMaterialversusObject |
4.982792 |
1.1931063 |
2.792607 |
7.4707139 |
2803.170 |
0.9999399 |
* |
kable(convert_stan_to_dataframe(adult_polysemy_effect_bayes),
caption = "Adult polysemy comparison")
Adult polysemy comparison
| Intercept |
-4.124954 |
0.9395835 |
-6.1043413 |
-2.371703 |
3180.929 |
1.000729 |
* |
| condition_labelPolysemy |
7.138142 |
1.2203236 |
4.7981355 |
9.495228 |
4000.000 |
1.001193 |
* |
| condition_labelMaterialversusObject |
2.782707 |
1.1619974 |
0.4192193 |
5.106435 |
3093.548 |
1.000816 |
* |
kable(convert_stan_to_dataframe(adult_polysemy_effect_bayes_seq),
caption = "Adult polysemy comparison with trial order")
Adult polysemy comparison with trial order
| Intercept |
-4.3340558 |
0.9605002 |
-6.2951909 |
-2.5176783 |
3189.047 |
1.0002359 |
* |
| condition_labelPolysemy |
7.5663384 |
1.2577853 |
5.2156401 |
10.1575156 |
4000.000 |
0.9999075 |
* |
| condition_labelMaterialversusObject |
2.9097237 |
1.1780320 |
0.5550778 |
5.2307297 |
3076.711 |
1.0003670 |
* |
| scaleseq |
-0.5065682 |
0.6708219 |
-1.8153391 |
0.7996535 |
2930.468 |
0.9996920 |
- |
| condition_labelPolysemy:scaleseq |
1.3757040 |
0.8709221 |
-0.3019466 |
3.1445580 |
3204.575 |
0.9996786 |
- |
| condition_labelMaterialversusObject:scaleseq |
0.4570539 |
0.7846589 |
-1.1287104 |
1.9776996 |
3345.511 |
0.9997037 |
- |
kable(convert_stan_to_dataframe(adult_polysemy_effect_bayes_list),
caption = "Adult polysemy comparison with list")
Adult polysemy comparison with list
| Intercept |
-4.0407644 |
1.262987 |
-6.6100821 |
-1.700829 |
2271.121 |
1.0006199 |
* |
| condition_labelPolysemy |
7.0302315 |
1.526801 |
4.1052493 |
10.117047 |
2468.370 |
0.9997604 |
* |
| condition_labelMaterialversusObject |
2.5341650 |
1.416452 |
-0.2539199 |
5.386819 |
1648.843 |
1.0048045 |
- |
| as.factororder2 |
-0.1834690 |
1.484503 |
-3.0907460 |
2.705086 |
2252.257 |
1.0035527 |
- |
| as.factororder3 |
-0.6239205 |
1.582301 |
-3.8105095 |
2.409767 |
2520.475 |
1.0004959 |
- |
| as.factororder4 |
-0.5806267 |
1.507333 |
-3.5846789 |
2.295734 |
2422.238 |
0.9994657 |
- |
| condition_labelPolysemy:as.factororder2 |
-0.6927652 |
1.804088 |
-4.1245327 |
2.970871 |
2493.971 |
1.0005165 |
- |
| condition_labelMaterialversusObject:as.factororder2 |
1.1160691 |
1.750448 |
-2.2320880 |
4.594584 |
2306.240 |
1.0019842 |
- |
| condition_labelPolysemy:as.factororder3 |
2.6844388 |
1.988905 |
-1.0936912 |
6.773514 |
3159.939 |
1.0004458 |
- |
| condition_labelMaterialversusObject:as.factororder3 |
-0.3329184 |
1.861131 |
-4.0350093 |
3.397440 |
2554.632 |
1.0001411 |
- |
| condition_labelPolysemy:as.factororder4 |
1.3367496 |
1.870778 |
-2.2910853 |
5.043008 |
2878.355 |
1.0000218 |
- |
| condition_labelMaterialversusObject:as.factororder4 |
0.9194244 |
1.813384 |
-2.6328385 |
4.410732 |
2513.266 |
0.9999518 |
- |
kable(convert_stan_to_dataframe(unambiguous_adults),
caption = "Unambiguous Control Condition Adults Bayesian model")
Unambiguous Control Condition Adults Bayesian model
| Intercept |
-5.116761 |
1.391304 |
-8.367355 |
-2.986699 |
2316.487 |
0.999977 |
* |
kable(convert_stan_to_dataframe(polysemy_adults),
caption = "Polysemy Condition Adults model")
Polysemy Condition Adults model
| Intercept |
3.625019 |
1.058251 |
1.853144 |
6.016717 |
2617.961 |
1.00092 |
* |
kable(convert_stan_to_dataframe(material_adults),
caption = "Material vs. Object Condition Adults Bayesian model")
Material vs. Object Condition Adults Bayesian model
| Intercept |
-1.105366 |
0.8803796 |
-2.885603 |
0.5896289 |
1459.728 |
1.004094 |
- |
kable(convert_stan_to_dataframe(material_adults_rep),
caption = "Material vs. Object Condition Replication Adults Bayesian model")
Material vs. Object Condition Replication Adults Bayesian model
| Intercept |
0.3709052 |
0.6956155 |
-0.9786634 |
1.750289 |
1409.107 |
1.000419 |
- |