knitr::opts_chunk$set(echo = TRUE)
knitr::opts_chunk$set(cache=TRUE)

library(brms)
library(tidyverse)
library(cowplot)
library(wesanderson)
library(knitr)
library(lme4)
## for bootstrapping 95% confidence intervals -- from Mike Frank https://github.com/langcog/KTE/blob/master/mcf.useful.R
library(bootstrap)
theta <- function(x,xdata,na.rm=T) {mean(xdata[x],na.rm=na.rm)}
ci.low <- function(x,na.rm=T) {
  quantile(bootstrap(1:length(x),1000,theta,x,na.rm=na.rm)$thetastar,.025,na.rm=na.rm)} #  mean(x,na.rm=na.rm) -
ci.high <- function(x,na.rm=T) {
  quantile(bootstrap(1:length(x),1000,theta,x,na.rm=na.rm)$thetastar,.975,na.rm=na.rm) } #- mean(x,na.rm=na.rm)}

 convert_stan_to_dataframe <- function(stan_object){
   sum.df <- data.frame(summary(stan_object)$fixed)
   sum.df$Diff_from_zero <- ifelse((sum.df$l.95..CI * sum.df$u.95..CI) > 0, "*","-")
   return(sum.df)
 }

1 Experiment 1 - Choice Task

Unambiguous Task

Polysemy Task

Vague Control Task

Homophony Task

1.1  Child data

a=1

child.SB.expt1 <- read_csv("./Expt1_ChoiceTask/Data/Children2.csv") %>%
  mutate(Item = ifelse(order <=2 ,
                       seq, abs((seq - 11))))

# Add readable condition labels

labels = tibble(condition = c(1:6), 
                condition_label = factor(x = c("Polysemy",
                                    "Unambiguous",
                                    "Material versus Object",
                                    "Word Extension (Some/A)",
                                    "Expt.4 Homophone",
                                    "Material vs. Object (Replication)"), 
                                    levels = c("Unambiguous",
                                    "Polysemy",
                                    "Material versus Object",
                                    "Word Extension (Some/A)",
                                    "Material vs. Object (Replication)",
                                    "Expt.4 Homophone")),
                homophone_comparison_label = factor(x = c( "Polysemy",
                                    "Unambiguous",
                                    "Material versus Object",
                                    "Word Extension (Some/A)",
                                    "Material vs. Object (Replication)",
                                    "Expt.4 Homophone"
                                    ), 
                                    levels = c("Expt.4 Homophone",
                                    "Material vs. Object (Replication)",
                                    "Word Extension (Some/A)",
                                    "Material versus Object",
                                    "Unambiguous",
                                    "Polysemy")))


kable(child.SB.expt1 %>%
        left_join(labels, by = "condition") %>%
        filter(Exclude == "no",type == "test", condition != 4) %>%
        mutate(age_group = floor(age.yrs)) %>%
        group_by(age_group,condition_label)%>%
        summarise(N = length(unique(subject))),
      caption = "Number of participants per condition")
Number of participants per condition
age_group condition_label N
3 Unambiguous 16
3 Polysemy 17
3 Material versus Object 16
3 Expt.4 Homophone 17
4 Unambiguous 18
4 Polysemy 16
4 Material versus Object 17
4 Expt.4 Homophone 16
child.SB.expt1.sum <- child.SB.expt1 %>%
  left_join(labels, by = "condition") %>%
  filter(Exclude == "no",type == "test", condition != 4) %>%
  select(condition_label,subject,age.yrs,response) %>%
  mutate(age_group = floor(age.yrs)) %>%   #, response = -1*(response-1)) %>%
  group_by(condition_label,subject)%>%
  summarise(response.m = mean(response,na.rm = T)) %>%
  group_by(condition_label) %>%
  summarise(response.mean = mean(response.m,na.rm = T), response.ci.low = ci.low(response.m),response.ci.high = ci.high(response.m))
  
dodge <- position_dodge(width=0.9)

# 
# ggplot(child.SB.expt1.sum, aes(condition_label, response.mean, fill = condition_label))+
#   geom_bar(stat="identity")+
#   theme_cowplot()+
#   geom_text(aes(y = response.mean,label = condition_label), angle = 30,nudge_y = -child.SB.expt1.sum$response.mean/1.8, colour = "white",fontface="bold",size = 5)+
#   geom_errorbar(aes(ymax = ifelse(child.SB.expt1.sum$response.mean > 0.5,child.SB.expt1.sum$response.ci.low,child.SB.expt1.sum$response.ci.high), 
#                     ymin = child.SB.expt1.sum$response.mean
#                       ), width=0, position = dodge, size = 1.1) +
#   ylim(c(0,1))+
#   ylab("Proportion showing shape bias")+
#   geom_hline(yintercept = 0.5, lty = 2)+
#   theme(axis.title.x=element_blank(),
#         axis.text.x=element_blank(),
#         axis.ticks.x=element_blank())+
#   guides(fill=FALSE)+
#   scale_fill_brewer(palette="Set1")
    
a = 1

child.SB.expt1.analysis <- child.SB.expt1 %>%
  left_join(labels, by = "condition") %>%
  filter(Exclude == "no",type == "test", condition != 4) %>%
  dplyr::mutate(age_group = as.character(floor(age.yrs)), 
                #response = -1*(response-1),
                contrasts_polysemy = ifelse(condition %in% c("1"),-1,1))

1.2  Adult data (Substance first)

a=0
adult.SB.expt1 <- read_csv("./Expt1_ChoiceTask/Data/Adults_SubstanceFirst.csv")

adult.SB.expt1_rep <- read_csv("./Expt1_ChoiceTask/Data/Adults_SubstanceFirst_Cond3Rep.csv")
adult.SB.expt1_rep$condition = 6

adult.SB.expt1 = bind_rows(adult.SB.expt1, adult.SB.expt1_rep)  %>%
  mutate(Item = ifelse(order <=2 ,
                       seq, abs((seq - 11))))

adult.SB.expt1.sum <- adult.SB.expt1 %>%
  left_join(labels, by = "condition") %>%
  filter(Exclude == "no",type == "test", condition != 4) %>%
  select(condition_label,subject,response) %>%
  #mutate(response = -1*(response-1)) %>%
  group_by(condition_label,subject)%>%
  summarise(response.m = mean(response,na.rm = T)) %>%
  group_by(condition_label) %>%
  summarise(response.mean = mean(response.m,na.rm = T), response.ci.low = ci.low(response.m),response.ci.high = ci.high(response.m))
  

adult.SB.expt1.analysis <- adult.SB.expt1 %>%
  left_join(labels, by = "condition") %>%
  filter(Exclude == "no",type == "test", condition != 4) %>%
  dplyr::mutate(age_group = as.character(floor(age.yrs)), 
                contrasts_polysemy = ifelse(condition %in% c("1"),-1,1))


# dodge <- position_dodge(width=0.9)

# 
# ggplot(adult.SB.expt1.sum, aes(condition_label, response.mean, fill = condition_label))+
#   geom_bar(stat="identity")+
#   geom_text(aes(y = response.mean,label = condition_label), angle = 30,nudge_y = -adult.SB.expt1.sum$response.mean/1.8, colour = "white",fontface="bold",size = 5)+
#   geom_errorbar(aes(ymax = ifelse(adult.SB.expt1.sum$response.mean > 0.5,adult.SB.expt1.sum$response.ci.low,adult.SB.expt1.sum$response.ci.high), 
#                     ymin = adult.SB.expt1.sum$response.mean
#                       ), width=0, position = dodge, size = 1.1) +
#   ylim(c(0,1))+
#   ylab("Proportion showing shape bias")+
#   geom_hline(yintercept = 0.5, lty = 2)+
#   theme_cowplot()+
#   theme(axis.title.x=element_blank(),
#         axis.text.x=element_blank(),
#         axis.ticks.x=element_blank())+
#   guides(fill=FALSE)+
#   scale_fill_brewer(palette="Set1")

1.3 Combine Adults and Kids for graphs

a=1
adult.SB.expt1.sum$AgeGroup = "Adults"
child.SB.expt1.sum$AgeGroup = "Children"

combine_graph = bind_rows(adult.SB.expt1.sum,child.SB.expt1.sum)

combine_graph$AgeGroup = ordered(combine_graph$AgeGroup, levels = c("Children","Adults"))

kable(combine_graph)
condition_label response.mean response.ci.low response.ci.high AgeGroup
Unambiguous 0.0156250 0.0000000 0.0472656 Adults
Polysemy 0.8906250 0.7500000 1.0000000 Adults
Material versus Object 0.3906250 0.1875000 0.6250000 Adults
Material vs. Object (Replication) 0.5625000 0.3750000 0.7347656 Adults
Expt.4 Homophone 0.2031250 0.0781250 0.3437500 Adults
Unambiguous 0.2720588 0.1468750 0.4044118 Children
Polysemy 0.7045455 0.5681818 0.8257576 Children
Material versus Object 0.8333333 0.7121212 0.9393939 Children
Expt.4 Homophone 0.3560606 0.2196970 0.4850379 Children
combine_graph$condition_label = factor(combine_graph$condition_label, levels = levels(combine_graph$condition_label), labels = gsub(" ", "\n", levels(combine_graph$condition_label), fixed = TRUE))


ggplot(combine_graph, aes(condition_label, response.mean, fill = condition_label))+
  geom_bar(stat="identity")+
  facet_grid(AgeGroup~.)+
 #geom_text(data = combine_graph, aes(y = response.mean,label = condition_label), angle = 30, colour = "white",fontface="bold",size = 5)+ #,nudge_y = -combine_graph$response.mean/1.8
  geom_errorbar(data= combine_graph, aes(ymax = ifelse(response.mean > 0.5,response.ci.low,response.ci.high), 
                    ymin = response.mean
                      ), width=0, position = dodge, size = 1.1) +
  ylim(c(0,1))+
  ylab("Proportion choosing material-match object")+
  geom_hline(yintercept = 0.5, lty = 2)+
  theme_cowplot()+
  theme(axis.title.x=element_blank(),
        axis.ticks.x=element_blank())+ #axis.text.x=element_blank(),
  guides(fill=FALSE)+
  scale_fill_brewer(palette="Set1")

ggplot(combine_graph, aes(condition_label, response.mean, fill = condition_label))+
  geom_bar(stat="identity")+
  facet_grid(AgeGroup~.)+
  #geom_text(data = combine_graph, aes(y = response.mean,label = condition_label), angle = 30, colour = "white",fontface="bold",size = 5)+ #,nudge_y = -combine_graph$response.mean/1.8
  geom_errorbar(data= combine_graph, aes(ymax = ifelse(response.mean > 0.5,response.ci.low,response.ci.high), 
                    ymin = response.mean
                      ), width=0, position = dodge, size = 1.1,color = c("black", "white","white","black",
                                                   "black","white","black","black","white")) +
  ylim(c(0,1))+
  ylab("Proportion choosing material-match object")+
  geom_hline(yintercept = 0.5, lty = 2)+
  theme_cowplot()+
  theme(axis.title.x=element_blank(),
        
        axis.ticks.x=element_blank())+ #axis.text.x=element_blank(),
  guides(fill=FALSE)+
  scale_fill_grey()

child.SB.expt1.sum <- child.SB.expt1 %>%
  left_join(labels, by = "condition") %>%
  filter(Exclude == "no",type == "test", condition != 4) %>%
  select(condition_label,subject,age.yrs,response) %>%
  mutate(age_group = as.character(floor(age.yrs))) %>%  #, response = -1*(response-1)) %>%
  group_by(age_group,condition_label,subject)%>%
  summarise(response.m = mean(response,na.rm = T)) %>%
  group_by(age_group,condition_label) %>%
  summarise(response.mean = mean(response.m,na.rm = T), response.ci.low = ci.low(response.m),response.ci.high = ci.high(response.m))
  

adult.SB.expt1.sum$age_group = "Adults"
combine_graph = bind_rows(adult.SB.expt1.sum,child.SB.expt1.sum)

combine_graph$AgeGroup = ordered(combine_graph$AgeGroup, levels = c("Children","Adults"))



ggplot(combine_graph, aes(condition_label, response.mean, fill = condition_label))+
  geom_bar(stat="identity")+
  facet_grid(age_group~.)+
  geom_errorbar(data= combine_graph, aes(,ymax = ifelse(response.mean > 0.5,response.ci.low,response.ci.high), 
                    ymin = response.mean
                      ), width=0, position = dodge, size = 1.1,color = c("black", "white","white","black",
                                                   "black","white","white","black",
                                                   "black","white","black","black","white")) +
  ylim(c(0,1))+
  ylab("Proportion choosing material-match object")+
  xlab("Condition") +
  geom_hline(yintercept = 0.5, lty = 2)+
  theme_cowplot()+
  theme(axis.title.x=element_blank(),
        axis.ticks.x=element_blank())+ #axis.text.x=element_blank(),
  guides(fill=FALSE)+
  scale_fill_grey()

polysemy_effect <- glmer(response ~  condition_label + (1|subject), 
                         data = subset(child.SB.expt1.analysis, condition %in% c(1,2,3)), 
                                       family = "binomial", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
polysemy_effect_bayes_continuous_age <- brm(response ~  scale(age.mos)*condition_label + (1|subject), 
                         data = subset(child.SB.expt1.analysis, condition %in% c(1,2,3)), 
                                       family = "bernoulli", cores = 4, prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
polysemy_effect_bayes_continuous_age_order <- brm(response ~  scale(age.mos)*condition_label*scale(seq) + (1|subject), 
                         data = subset(child.SB.expt1.analysis, condition %in% c(1,2,3)), 
                                       family = "bernoulli", cores = 4, prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
polysemy_effect_bayes_continuous_age_list <- brm(response ~  scale(age.mos)*condition_label*as.factor(order) + (1|subject), 
                         data = subset(child.SB.expt1.analysis, condition %in% c(1,2,3)), 
                                       family = "bernoulli", cores = 4, prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
polysemy_effect_bayes <- brm(response ~  age_group*condition_label + (1|subject), 
                         data = subset(child.SB.expt1.analysis, condition %in% c(1,2,3)), 
                                       family = "bernoulli", cores = 4, prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
simpler_polysemy_effect_bayes <- brm(response ~  condition_label + (1|subject), 
                         data = subset(child.SB.expt1.analysis, condition %in% c(1,2,3)), 
                                       family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 1.13933 seconds (Warm-up)
##                0.741681 seconds (Sampling)
##                1.88101 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 1.07898 seconds (Warm-up)
##                0.741469 seconds (Sampling)
##                1.82045 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 1.07267 seconds (Warm-up)
##                0.739548 seconds (Sampling)
##                1.81222 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 1.02698 seconds (Warm-up)
##                0.741727 seconds (Sampling)
##                1.76871 seconds (Total)
simpler_polysemy_effect_bayes_three <- brm(response ~  condition_label + (1|subject), 
                         data = subset(child.SB.expt1.analysis, condition %in% c(1,2,3) & age_group == "3"), 
                                       family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.473025 seconds (Warm-up)
##                0.401014 seconds (Sampling)
##                0.874039 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.432778 seconds (Warm-up)
##                0.436537 seconds (Sampling)
##                0.869315 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.467644 seconds (Warm-up)
##                0.401939 seconds (Sampling)
##                0.869583 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.462133 seconds (Warm-up)
##                0.400683 seconds (Sampling)
##                0.862816 seconds (Total)
simpler_polysemy_effect_bayes_four <- brm(response ~  condition_label + (1|subject), 
                         data = subset(child.SB.expt1.analysis, condition %in% c(1,2,3) & age_group == "4"), 
                                       family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.499346 seconds (Warm-up)
##                0.421465 seconds (Sampling)
##                0.920811 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.494148 seconds (Warm-up)
##                0.418962 seconds (Sampling)
##                0.91311 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.483719 seconds (Warm-up)
##                0.421809 seconds (Sampling)
##                0.905528 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.511222 seconds (Warm-up)
##                0.415876 seconds (Sampling)
##                0.927098 seconds (Total)
adult_polysemy_effect_bayes <- brm(response ~  condition_label + (1|subject), 
                         data = subset(adult.SB.expt1.analysis,condition %in% c(1,2,3)), 
                                       family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.453663 seconds (Warm-up)
##                0.40218 seconds (Sampling)
##                0.855843 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.463421 seconds (Warm-up)
##                0.401874 seconds (Sampling)
##                0.865295 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.477148 seconds (Warm-up)
##                0.402246 seconds (Sampling)
##                0.879394 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.465518 seconds (Warm-up)
##                0.40084 seconds (Sampling)
##                0.866358 seconds (Total)
adult_polysemy_effect_bayes_seq <- brm(response ~  condition_label*scale(seq) + (1|subject), 
                         data = subset(adult.SB.expt1.analysis,condition %in% c(1,2,3)), 
                                       family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.525102 seconds (Warm-up)
##                0.429644 seconds (Sampling)
##                0.954746 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.527144 seconds (Warm-up)
##                0.423504 seconds (Sampling)
##                0.950648 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.519414 seconds (Warm-up)
##                0.424654 seconds (Sampling)
##                0.944068 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.522849 seconds (Warm-up)
##                0.424964 seconds (Sampling)
##                0.947813 seconds (Total)
adult_polysemy_effect_bayes_list <- brm(response ~  condition_label*as.factor(order) + (1|subject), 
                         data = subset(adult.SB.expt1.analysis,condition %in% c(1,2,3)), 
                                       family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.789854 seconds (Warm-up)
##                0.745773 seconds (Sampling)
##                1.53563 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.798516 seconds (Warm-up)
##                0.699009 seconds (Sampling)
##                1.49752 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.818017 seconds (Warm-up)
##                0.723092 seconds (Sampling)
##                1.54111 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.791517 seconds (Warm-up)
##                0.764924 seconds (Sampling)
##                1.55644 seconds (Total)
unambiguous_kids <- brm(response ~  1 + (1|subject), 
                         data = subset(child.SB.expt1.analysis, condition_label %in% c("Unambiguous") ), 
                                       family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.211951 seconds (Warm-up)
##                0.220544 seconds (Sampling)
##                0.432495 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.21605 seconds (Warm-up)
##                0.223849 seconds (Sampling)
##                0.439899 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.227643 seconds (Warm-up)
##                0.226658 seconds (Sampling)
##                0.454301 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.219604 seconds (Warm-up)
##                0.244296 seconds (Sampling)
##                0.4639 seconds (Total)
polysemy_kids <- brm(response ~  1 + (1|subject), 
                         data = subset(child.SB.expt1.analysis, condition_label %in% c("Polysemy") ), 
                                       family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.223052 seconds (Warm-up)
##                0.315162 seconds (Sampling)
##                0.538214 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.229201 seconds (Warm-up)
##                0.22927 seconds (Sampling)
##                0.458471 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.213874 seconds (Warm-up)
##                0.265665 seconds (Sampling)
##                0.479539 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.213161 seconds (Warm-up)
##                0.22815 seconds (Sampling)
##                0.441311 seconds (Total)
material_kids <- brm(response ~  1 + (1|subject), 
                         data = subset(child.SB.expt1.analysis, condition %in% c("3") ), 
                                       family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.250339 seconds (Warm-up)
##                0.223651 seconds (Sampling)
##                0.47399 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.255545 seconds (Warm-up)
##                0.225745 seconds (Sampling)
##                0.48129 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.240103 seconds (Warm-up)
##                0.240333 seconds (Sampling)
##                0.480436 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.240794 seconds (Warm-up)
##                0.227913 seconds (Sampling)
##                0.468707 seconds (Total)
unambiguous_adults <- brm(response ~  1 + (1|subject), 
                         data = subset(adult.SB.expt1.analysis, condition_label %in% c("Unambiguous") ), 
                                       family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.116738 seconds (Warm-up)
##                0.134573 seconds (Sampling)
##                0.251311 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.131343 seconds (Warm-up)
##                0.100968 seconds (Sampling)
##                0.232311 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.111056 seconds (Warm-up)
##                0.108071 seconds (Sampling)
##                0.219127 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.129158 seconds (Warm-up)
##                0.083402 seconds (Sampling)
##                0.21256 seconds (Total)
polysemy_adults <- brm(response ~  1 + (1|subject), 
                         data = subset(adult.SB.expt1.analysis, condition_label %in% c("Polysemy") ), 
                                       family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.123217 seconds (Warm-up)
##                0.128399 seconds (Sampling)
##                0.251616 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.121001 seconds (Warm-up)
##                0.141564 seconds (Sampling)
##                0.262565 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.115453 seconds (Warm-up)
##                0.12667 seconds (Sampling)
##                0.242123 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.126507 seconds (Warm-up)
##                0.140208 seconds (Sampling)
##                0.266715 seconds (Total)
material_adults <- brm(response ~  1 + (1|subject), 
                         data = subset(adult.SB.expt1.analysis, condition %in% c("3") ), 
                                       family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.11239 seconds (Warm-up)
##                0.124081 seconds (Sampling)
##                0.236471 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.109884 seconds (Warm-up)
##                0.087507 seconds (Sampling)
##                0.197391 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.113019 seconds (Warm-up)
##                0.125553 seconds (Sampling)
##                0.238572 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.114294 seconds (Warm-up)
##                0.09776 seconds (Sampling)
##                0.212054 seconds (Total)
a = 1
material_adults_rep <- brm(response ~  1 + (1|subject), 
                         data = subset(adult.SB.expt1.analysis, condition %in% c("6") ), 
                                       family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.109237 seconds (Warm-up)
##                0.084816 seconds (Sampling)
##                0.194053 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.106357 seconds (Warm-up)
##                0.0831 seconds (Sampling)
##                0.189457 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.108738 seconds (Warm-up)
##                0.078465 seconds (Sampling)
##                0.187203 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.104312 seconds (Warm-up)
##                0.073941 seconds (Sampling)
##                0.178253 seconds (Total)
homophone_kids <- brm(response ~  1 + (1|subject), 
                         data = subset(child.SB.expt1.analysis, condition %in% c("5") ), 
                                       family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.198203 seconds (Warm-up)
##                0.239998 seconds (Sampling)
##                0.438201 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.204675 seconds (Warm-up)
##                0.259975 seconds (Sampling)
##                0.46465 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.209031 seconds (Warm-up)
##                0.277998 seconds (Sampling)
##                0.487029 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.200198 seconds (Warm-up)
##                0.282878 seconds (Sampling)
##                0.483076 seconds (Total)
homophone_adults <- brm(response ~  1 + (1|subject), 
                         data = subset(adult.SB.expt1.analysis, condition %in% c("5") ), 
                                       family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.128861 seconds (Warm-up)
##                0.13357 seconds (Sampling)
##                0.262431 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.129099 seconds (Warm-up)
##                0.13464 seconds (Sampling)
##                0.263739 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.118959 seconds (Warm-up)
##                0.141252 seconds (Sampling)
##                0.260211 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.115287 seconds (Warm-up)
##                0.139874 seconds (Sampling)
##                0.255161 seconds (Total)
homophone_kids_seq <- brm(response ~  1 + scale(seq)+ (1|subject), 
                         data = subset(child.SB.expt1.analysis, condition %in% c("5") ), 
                                       family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.256863 seconds (Warm-up)
##                0.21525 seconds (Sampling)
##                0.472113 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.271312 seconds (Warm-up)
##                0.360077 seconds (Sampling)
##                0.631389 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.257271 seconds (Warm-up)
##                0.368892 seconds (Sampling)
##                0.626163 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.260794 seconds (Warm-up)
##                0.389384 seconds (Sampling)
##                0.650178 seconds (Total)
homophone_adults_seq <- brm(response ~  1 + scale(seq)+ (1|subject), 
                         data = subset(adult.SB.expt1.analysis, condition %in% c("5") ), 
                                       family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.152121 seconds (Warm-up)
##                0.179762 seconds (Sampling)
##                0.331883 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.294968 seconds (Warm-up)
##                0.175906 seconds (Sampling)
##                0.470874 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.15975 seconds (Warm-up)
##                0.179705 seconds (Sampling)
##                0.339455 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.159926 seconds (Warm-up)
##                0.178036 seconds (Sampling)
##                0.337962 seconds (Total)
homophone_kids_list <- brm(response ~  1 + as.factor(order)+ (1|subject), 
                         data = subset(child.SB.expt1.analysis, condition %in% c("5") ), 
                                       family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.371601 seconds (Warm-up)
##                0.310795 seconds (Sampling)
##                0.682396 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.364941 seconds (Warm-up)
##                0.328691 seconds (Sampling)
##                0.693632 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.363894 seconds (Warm-up)
##                0.323384 seconds (Sampling)
##                0.687278 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.347309 seconds (Warm-up)
##                0.318113 seconds (Sampling)
##                0.665422 seconds (Total)
homophone_adults_list <- brm(response ~  1 +as.factor(order)+ scale(seq)+ (1|subject), 
                         data = subset(adult.SB.expt1.analysis, condition %in% c("5") ), 
                                       family = "bernoulli", prior= c(prior(normal(0, 1), class = sd),prior(normal(0, 2.5), class = b)))
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.195347 seconds (Warm-up)
##                0.191072 seconds (Sampling)
##                0.386419 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.198232 seconds (Warm-up)
##                0.194147 seconds (Sampling)
##                0.392379 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.187891 seconds (Warm-up)
##                0.18924 seconds (Sampling)
##                0.377131 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.200586 seconds (Warm-up)
##                0.183327 seconds (Sampling)
##                0.383913 seconds (Total)
## Warning: Rows containing NAs were excluded from the model
## Compiling the C++ model
## Start sampling
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 1.02481 seconds (Warm-up)
##                0.743883 seconds (Sampling)
##                1.76869 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 1.00774 seconds (Warm-up)
##                0.740554 seconds (Sampling)
##                1.7483 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 1.03052 seconds (Warm-up)
##                0.751002 seconds (Sampling)
##                1.78152 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 1.01232 seconds (Warm-up)
##                0.743471 seconds (Sampling)
##                1.75579 seconds (Total)
## Compiling the C++ model
## Start sampling
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.439476 seconds (Warm-up)
##                0.399119 seconds (Sampling)
##                0.838595 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.416329 seconds (Warm-up)
##                0.395886 seconds (Sampling)
##                0.812215 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.433602 seconds (Warm-up)
##                0.552499 seconds (Sampling)
##                0.986101 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'bernoulli(logit) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.424714 seconds (Warm-up)
##                0.716984 seconds (Sampling)
##                1.1417 seconds (Total)
a=1
kable(summary(polysemy_effect)$coef,
     caption = "GLMER model")
GLMER model
Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.00439 0.0007121 -9836.576 0
condition_labelPolysemy 13.75911 0.0007121 19322.621 0
condition_labelMaterial versus Object 15.01090 0.0007121 21080.465 0
kable(convert_stan_to_dataframe(polysemy_effect_bayes_continuous_age),
     caption = "Continuous Age Bayesian model")
Continuous Age Bayesian model
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -1.6998709 0.6469575 -3.0059335 -0.4610000 1757.460 1.000891 *
scaleage.mos -0.2612191 0.6201771 -1.4911206 0.9479904 1597.518 1.001659 -
condition_labelPolysemy 3.5114542 0.9024642 1.7221345 5.3222225 1819.649 1.000481 *
condition_labelMaterialversusObject 5.0811228 0.9905836 3.2078876 7.0907123 1989.226 1.000463 *
scaleage.mos:condition_labelPolysemy 1.2613814 0.8557599 -0.4291301 2.9629697 1659.341 1.000986 -
scaleage.mos:condition_labelMaterialversusObject 0.5552364 0.9558591 -1.3029083 2.4353371 1667.134 1.002386 -
kable(convert_stan_to_dataframe(polysemy_effect_bayes),
     caption = "Categorical Age Bayesian model")
Categorical Age Bayesian model
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -1.3947931 0.7839043 -2.9537064 0.1216951 1301.738 1.004244 -
age_group4 -0.7785081 1.0093151 -2.7522025 1.1466221 1156.688 1.005525 -
condition_labelPolysemy 2.2788982 1.0716646 0.1895725 4.4288276 1125.985 1.004302 *
condition_labelMaterialversusObject 4.2302808 1.0956463 2.1067321 6.4080651 1445.581 1.003857 *
age_group4:condition_labelPolysemy 3.0078022 1.4396845 0.2484581 5.8243139 1430.583 1.003305 *
age_group4:condition_labelMaterialversusObject 2.0208103 1.4581765 -0.8320497 4.9207661 1330.140 1.003582 -
kable(convert_stan_to_dataframe(polysemy_effect_bayes_continuous_age_order),
     caption = "Continuous Age plus effect of item order Bayesian model")
Continuous Age plus effect of item order Bayesian model
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -1.7175983 0.6759117 -3.0480584 -0.3771064 1758.784 1.0025077 *
scaleage.mos -0.2800654 0.6515267 -1.5261737 1.0277616 1703.326 1.0019588 -
condition_labelPolysemy 3.6460990 0.9529432 1.8062331 5.5978533 1852.984 1.0028809 *
condition_labelMaterialversusObject 5.2963171 1.0014131 3.3746439 7.3011070 2353.708 0.9996053 *
scaleseq -0.4160170 0.3192030 -1.0448547 0.2052267 2495.381 0.9998088 -
scaleage.mos:condition_labelPolysemy 1.3874551 0.9091499 -0.3631011 3.1478393 1724.682 1.0013477 -
scaleage.mos:condition_labelMaterialversusObject 0.6174986 0.9928104 -1.3230234 2.5650410 1985.724 1.0008726 -
scaleage.mos:scaleseq 0.2680796 0.3344675 -0.3697947 0.9407333 2833.816 1.0008771 -
condition_labelPolysemy:scaleseq 0.7752601 0.4523064 -0.0970650 1.6706994 2907.862 1.0002956 -
condition_labelMaterialversusObject:scaleseq 0.0290829 0.5217127 -1.0108081 1.0643365 3159.125 1.0003019 -
scaleage.mos:condition_labelPolysemy:scaleseq 0.0156892 0.4424374 -0.8729618 0.9019794 2936.119 1.0027406 -
scaleage.mos:condition_labelMaterialversusObject:scaleseq -0.7079933 0.5225072 -1.7543376 0.2948526 3373.595 0.9996036 -
kable(convert_stan_to_dataframe(polysemy_effect_bayes_continuous_age_list),
     caption = "Continuous Age plus effect of List Bayesian model")
Continuous Age plus effect of List Bayesian model
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -1.1013612 0.9306761 -2.9592635 0.7092786 1583.841 1.0029905 -
scaleage.mos -0.1288249 0.8535806 -1.8057609 1.5371031 1574.579 1.0015831 -
condition_labelPolysemy 3.8960288 1.1844296 1.5986466 6.2066365 1978.910 1.0015370 *
condition_labelMaterialversusObject 4.1714771 1.2613243 1.7979790 6.7164369 1907.291 1.0030591 *
as.factororder2 0.2663181 1.2501293 -2.2635858 2.7482218 2174.839 1.0003644 -
as.factororder3 -1.9289152 1.3015284 -4.5978144 0.5823471 1513.234 1.0013690 -
as.factororder4 -0.5591404 1.3287323 -3.1714489 2.0463075 1617.316 1.0016575 -
scaleage.mos:condition_labelPolysemy 1.5918185 1.1851727 -0.6837457 3.9970124 1615.424 1.0025434 -
scaleage.mos:condition_labelMaterialversusObject 1.0037313 1.2061505 -1.3177059 3.3801183 1955.325 1.0003120 -
scaleage.mos:as.factororder2 -1.0956829 1.2285334 -3.5679940 1.2375705 2195.687 0.9996146 -
scaleage.mos:as.factororder3 -0.9754109 1.3205074 -3.6189035 1.6363170 1896.412 1.0026604 -
scaleage.mos:as.factororder4 1.2181224 1.3110295 -1.3470644 3.7846310 1879.957 1.0011565 -
condition_labelPolysemy:as.factororder2 -0.2821910 1.6801840 -3.5132537 3.0518774 2537.922 1.0010979 -
condition_labelMaterialversusObject:as.factororder2 1.7631593 1.8320106 -1.7709417 5.5097367 3100.713 1.0001597 -
condition_labelPolysemy:as.factororder3 0.6607266 1.6580097 -2.6224383 3.8674786 2036.441 1.0027021 -
condition_labelMaterialversusObject:as.factororder3 1.7250091 1.6697223 -1.6085651 5.0082231 2275.106 1.0017593 -
condition_labelPolysemy:as.factororder4 -1.9104601 1.6881953 -5.2361741 1.3349228 2381.447 1.0016507 -
condition_labelMaterialversusObject:as.factororder4 3.2021852 1.9236143 -0.4935752 7.0814173 2978.430 1.0004707 -
scaleage.mos:condition_labelPolysemy:as.factororder2 0.3578286 1.6096271 -2.8514888 3.5924277 2229.123 0.9999696 -
scaleage.mos:condition_labelMaterialversusObject:as.factororder2 -1.7845794 1.8761161 -5.5621365 1.9079806 3085.593 1.0001996 -
scaleage.mos:condition_labelPolysemy:as.factororder3 -0.6506507 1.7609547 -4.0460049 2.7563642 2396.873 1.0009213 -
scaleage.mos:condition_labelMaterialversusObject:as.factororder3 0.5109298 1.7020821 -2.7880974 3.9142093 2486.210 1.0001955 -
scaleage.mos:condition_labelPolysemy:as.factororder4 0.4641506 1.7130776 -2.7925852 3.9302908 2309.636 1.0010673 -
scaleage.mos:condition_labelMaterialversusObject:as.factororder4 -0.8148095 1.7471254 -4.1354795 2.6464533 2570.208 0.9998571 -
kable(convert_stan_to_dataframe(simpler_polysemy_effect_bayes),
     caption = "Simpler Bayesian model")
Simpler Bayesian model
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -1.658406 0.6446640 -2.967773 -0.4634405 1536.899 1.0018575 *
condition_labelPolysemy 3.420210 0.8938251 1.755651 5.2792661 1662.583 0.9998583 *
condition_labelMaterialversusObject 4.975715 0.9513267 3.212356 6.8924837 1858.110 1.0010043 *
kable(convert_stan_to_dataframe(unambiguous_kids),
      caption = "Unambiguous Control Condition Kids Bayesian model")
Unambiguous Control Condition Kids Bayesian model
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -2.048691 0.6544722 -3.459115 -0.907049 2456.031 0.9994982 *
kable(convert_stan_to_dataframe(polysemy_kids),
      caption = "Polysemy Condition Kids Bayesian model")
Polysemy Condition Kids Bayesian model
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept 1.755284 0.5997693 0.6580427 3.026568 2493.183 1.001573 *
kable(convert_stan_to_dataframe(material_kids),
      caption = "Material vs. Object Condition Kids Bayesian model")
Material vs. Object Condition Kids Bayesian model
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept 3.540103 0.8498518 2.095777 5.414366 2666.097 0.9996351 *
kable(convert_stan_to_dataframe(simpler_polysemy_effect_bayes_three),
      caption = "Simpler Bayesian model for three-year-olds")
Simpler Bayesian model for three-year-olds
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -0.8519557 0.7276756 -2.2723227 0.571773 2490.286 1.002322 -
condition_labelPolysemy 1.4760780 0.9930959 -0.4638941 3.439269 2412.286 1.001575 -
condition_labelMaterialversusObject 3.2538791 1.0680840 1.1800836 5.314217 2264.712 1.003143 *
kable(convert_stan_to_dataframe(simpler_polysemy_effect_bayes_four),
      caption = "Simpler Bayesian model for four-year-olds")
Simpler Bayesian model for four-year-olds
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -1.663656 0.7919165 -3.266265 -0.0910843 2521.875 1.0006280 *
condition_labelPolysemy 4.389636 1.1490809 2.125471 6.7088454 3034.897 1.0003714 *
condition_labelMaterialversusObject 4.982792 1.1931063 2.792607 7.4707139 2803.170 0.9999399 *
kable(convert_stan_to_dataframe(adult_polysemy_effect_bayes),
      caption = "Adult polysemy comparison")
Adult polysemy comparison
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -4.124954 0.9395835 -6.1043413 -2.371703 3180.929 1.000729 *
condition_labelPolysemy 7.138142 1.2203236 4.7981355 9.495228 4000.000 1.001193 *
condition_labelMaterialversusObject 2.782707 1.1619974 0.4192193 5.106435 3093.548 1.000816 *
kable(convert_stan_to_dataframe(adult_polysemy_effect_bayes_seq),
      caption = "Adult polysemy comparison with trial order")
Adult polysemy comparison with trial order
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -4.3340558 0.9605002 -6.2951909 -2.5176783 3189.047 1.0002359 *
condition_labelPolysemy 7.5663384 1.2577853 5.2156401 10.1575156 4000.000 0.9999075 *
condition_labelMaterialversusObject 2.9097237 1.1780320 0.5550778 5.2307297 3076.711 1.0003670 *
scaleseq -0.5065682 0.6708219 -1.8153391 0.7996535 2930.468 0.9996920 -
condition_labelPolysemy:scaleseq 1.3757040 0.8709221 -0.3019466 3.1445580 3204.575 0.9996786 -
condition_labelMaterialversusObject:scaleseq 0.4570539 0.7846589 -1.1287104 1.9776996 3345.511 0.9997037 -
kable(convert_stan_to_dataframe(adult_polysemy_effect_bayes_list),
      caption = "Adult polysemy comparison with list")
Adult polysemy comparison with list
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -4.0407644 1.262987 -6.6100821 -1.700829 2271.121 1.0006199 *
condition_labelPolysemy 7.0302315 1.526801 4.1052493 10.117047 2468.370 0.9997604 *
condition_labelMaterialversusObject 2.5341650 1.416452 -0.2539199 5.386819 1648.843 1.0048045 -
as.factororder2 -0.1834690 1.484503 -3.0907460 2.705086 2252.257 1.0035527 -
as.factororder3 -0.6239205 1.582301 -3.8105095 2.409767 2520.475 1.0004959 -
as.factororder4 -0.5806267 1.507333 -3.5846789 2.295734 2422.238 0.9994657 -
condition_labelPolysemy:as.factororder2 -0.6927652 1.804088 -4.1245327 2.970871 2493.971 1.0005165 -
condition_labelMaterialversusObject:as.factororder2 1.1160691 1.750448 -2.2320880 4.594584 2306.240 1.0019842 -
condition_labelPolysemy:as.factororder3 2.6844388 1.988905 -1.0936912 6.773514 3159.939 1.0004458 -
condition_labelMaterialversusObject:as.factororder3 -0.3329184 1.861131 -4.0350093 3.397440 2554.632 1.0001411 -
condition_labelPolysemy:as.factororder4 1.3367496 1.870778 -2.2910853 5.043008 2878.355 1.0000218 -
condition_labelMaterialversusObject:as.factororder4 0.9194244 1.813384 -2.6328385 4.410732 2513.266 0.9999518 -
kable(convert_stan_to_dataframe(unambiguous_adults),
      caption = "Unambiguous Control Condition Adults Bayesian model")
Unambiguous Control Condition Adults Bayesian model
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -5.116761 1.391304 -8.367355 -2.986699 2316.487 0.999977 *
kable(convert_stan_to_dataframe(polysemy_adults),
      caption = "Polysemy Condition Adults model")
Polysemy Condition Adults model
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept 3.625019 1.058251 1.853144 6.016717 2617.961 1.00092 *
kable(convert_stan_to_dataframe(material_adults),
      caption = "Material vs. Object Condition Adults Bayesian model")
Material vs. Object Condition Adults Bayesian model
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -1.105366 0.8803796 -2.885603 0.5896289 1459.728 1.004094 -
kable(convert_stan_to_dataframe(material_adults_rep),
      caption = "Material vs. Object Condition Replication Adults Bayesian model")
Material vs. Object Condition Replication Adults Bayesian model
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept 0.3709052 0.6956155 -0.9786634 1.750289 1409.107 1.000419 -

1.4  Homophone condition

Homophone Condition kids model
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -1.147042 0.5483706 -2.279511 -0.1364286 1939.067 1.000251 *
Homophone Condition Adults model
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -1.844643 0.5981932 -3.202179 -0.862164 1648.464 1.001383 *
Homophone Condition kids model with item order as factor
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -1.2538517 0.5686213 -2.442316 -0.1983250 1916.281 1.003917 *
scaleseq -0.6650393 0.2730021 -1.223305 -0.1502611 4000.000 1.001515 *
Homophone Condition Adults model with item order as factor
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -2.1164177 0.6831474 -3.694561 -1.0004937 1992.817 1.0000748 *
scaleseq -0.8174398 0.4167121 -1.669726 -0.0519515 4000.000 0.9998914 *
Homophone Condition kids model with list as factor
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -1.0701005 0.8676364 -2.836024 0.5620098 2744.866 1.0000967 -
as.factororder2 0.6603825 1.2002765 -1.684476 2.9865393 2967.367 0.9997442 -
as.factororder3 0.5015958 1.1867697 -1.870588 2.8505095 2843.609 1.0002915 -
as.factororder4 -1.8090588 1.2514056 -4.299726 0.5788340 3447.208 0.9999392 -
Homophone Condition Adults model with list as factor
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -1.8195256 1.032767 -4.072920 -0.0112893 2547.585 1.0005958 *
as.factororder2 -0.0675844 1.317717 -2.658726 2.5397704 2975.091 1.0014160 -
as.factororder3 -1.1131648 1.403120 -4.009844 1.6167089 3078.858 0.9997943 -
as.factororder4 -0.9106137 1.381628 -3.553219 1.8141380 3394.435 1.0002816 -
scaleseq -0.8859788 0.440117 -1.798595 -0.0815603 4000.000 0.9991981 *
Homophone Condition comparison for kids
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -1.181556 0.6058472 -2.375047 -0.0128153 1575.856 0.9993584 *
homophone_comparison_labelUnambiguous -0.983387 0.8755436 -2.707072 0.7214412 1444.187 1.0000546 -
homophone_comparison_labelPolysemy 2.943072 0.8756607 1.290539 4.6764080 1592.775 1.0001955 *
Homophone Condition comparison for adults
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -1.955781 0.5995563 -3.261604 -0.8735774 3290.294 0.9997760 *
homophone_comparison_labelUnambiguous -3.067668 1.1522886 -5.539591 -1.0278839 4000.000 1.0001541 *
homophone_comparison_labelPolysemy 4.812457 0.9603414 3.061728 6.8513451 4000.000 0.9996258 *

1.5 Object first comparison

a=0
adult.SB.expt1.obj <- read_csv("./Expt1_ChoiceTask/Data/Adults_ObjectFirst.csv")
adult.SB.expt1.obj$age_group = "Adult"

child.SB.expt1.obj <- read_csv("./Expt1_ChoiceTask/Data/Child_ObjectFirst.csv")
## Warning: Missing column names filled in: 'X24' [24]
child.SB.expt1.obj$age_group = "Child"

combined.SB.expt1.obj = bind_rows(adult.SB.expt1.obj,child.SB.expt1.obj)

combined.SB.expt1.obj$AgeGroup = factor(ifelse(combined.SB.expt1.obj$age_group == "Child", "Children","Adults"), levels = c("Children","Adults"))


combined.SB.expt1.obj <- combined.SB.expt1.obj %>%
  left_join(labels, by = "condition") %>%
  filter(Exclude == "no",type == "test", condition != 4)

combined.SB.expt1.obj.graph =  combined.SB.expt1.obj %>%
  dplyr::select(AgeGroup,condition_label,subject,response) %>%
  #mutate(response = -1*(response-1)) %>%
  group_by(AgeGroup,condition_label,subject)%>%
  dplyr::summarise(response.m = mean(response,na.rm = T)) %>%
  group_by(AgeGroup,condition_label) %>%
  dplyr::summarise(response.mean = mean(response.m,na.rm = T), response.ci.low = ci.low(response.m),response.ci.high = ci.high(response.m))
  
dodge <- position_dodge(width=0.9)


ggplot(combined.SB.expt1.obj.graph, aes(condition_label, response.mean, fill = condition_label))+
  geom_bar(stat="identity")+
  facet_grid(AgeGroup~.)+
  geom_errorbar(data= combined.SB.expt1.obj.graph, aes(ymax = ifelse(response.mean > 0.5,response.ci.low,response.ci.high), 
                    ymin = response.mean
                      ), width=0, position = dodge, size = 1.1) +
  ylim(c(0,1))+
  ylab("Proportion choosing material-match object")+
  geom_hline(yintercept = 0.5, lty = 2)+
  theme_cowplot()+
  theme(axis.title.x=element_blank(),
        #axis.text.x=element_blank(),
        axis.ticks.x=element_blank())+
  guides(fill=FALSE)+
  scale_fill_brewer(palette="Set1")

kable(combined.SB.expt1.obj.graph)
AgeGroup condition_label response.mean response.ci.low response.ci.high
Children Unambiguous 0.171875 0.03125 0.3441406
Children Polysemy 0.750000 0.56250 0.9375000
Adults Unambiguous 0.046875 0.00000 0.1406250
Adults Polysemy 0.875000 0.68750 1.0000000
a=1

kable(convert_stan_to_dataframe(obj_first_polysemy_effect_child_order),
     caption = "Child Object First with Item Order effect")
Child Object First with Item Order effect
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -2.8601241 0.9967589 -4.9398360 -1.011789 2934.701 1.0010748 *
condition_labelPolysemy 4.8557074 1.3098208 2.3556925 7.565550 3465.150 1.0002149 *
scaleseq 0.3412886 0.5071282 -0.6408636 1.357316 4000.000 0.9995080 -
condition_labelPolysemy:scaleseq -0.3238561 0.7260867 -1.7607592 1.134458 4000.000 0.9998351 -
kable(convert_stan_to_dataframe(obj_first_polysemy_effect_child_list),
     caption = "Child Object First with List effect")
Child Object First with List effect
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -3.3973868 1.301923 -6.063196 -0.8750734 2045.158 1.0015670 *
condition_labelPolysemy 4.5937932 1.410879 1.957073 7.5170686 2382.792 1.0010036 *
as.factororder2 2.0342907 1.583492 -1.026873 5.2223797 2570.997 1.0006913 -
as.factororder3 0.7608927 1.584926 -2.315293 3.8913391 2364.310 1.0000122 -
as.factororder4 -1.1728811 1.697950 -4.468234 2.1999807 3319.813 1.0015167 -
condition_labelPolysemy:as.factororder2 2.4934398 2.001443 -1.414125 6.4526324 4000.000 0.9999397 -
condition_labelPolysemy:as.factororder3 -2.1556325 1.976045 -6.078596 1.8233277 3023.730 1.0001143 -
condition_labelPolysemy:as.factororder4 1.6873334 1.892029 -2.075079 5.4916884 3263.920 1.0007477 -
kable(convert_stan_to_dataframe(obj_first_polysemy_effect_child),
     caption = "Child Object First")
Child Object First
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -2.745599 0.9846825 -4.718500 -0.8553959 2829.687 1.001448 *
condition_labelPolysemy 4.735804 1.2706249 2.295339 7.2757132 3373.335 1.000036 *
kable(convert_stan_to_dataframe(obj_first_polysemy_effect_adult),
     caption = "Adult Object First")
Adult Object First
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -4.075909 0.9863563 -6.120660 -2.300718 3530.714 1.0000642 *
condition_labelPolysemy 7.036680 1.2322164 4.807798 9.582091 4000.000 0.9996956 *
kable(convert_stan_to_dataframe(obj_first_polysemy_effect_adult_seq2),
     caption = "Adult Object First with Item Order info")
Adult Object First with Item Order info
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -4.3147618 1.0085878 -6.482478 -2.5262756 3545.434 1.001078 *
condition_labelPolysemy 7.3244422 1.2771385 5.008797 9.9287877 4000.000 1.000049 *
scaleseq -0.5585296 0.6556420 -1.906011 0.6642044 4000.000 1.000137 -
condition_labelPolysemy:scaleseq 0.5167193 0.8358234 -1.089667 2.1912742 4000.000 1.000039 -
kable(convert_stan_to_dataframe(obj_first_polysemy_effect_adult_list),
     caption = "Adult Object First with List info")
Adult Object First with List info
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -3.2216849 1.231039 -5.831134 -1.012619 3258.463 0.9999276 *
condition_labelPolysemy 6.9907329 1.441814 4.193309 9.921450 4000.000 0.9993883 *
as.factororder2 -1.9491761 1.678113 -5.351460 1.209100 4000.000 0.9995184 -
as.factororder3 -0.9415750 1.615318 -4.102888 2.154795 4000.000 0.9993705 -
as.factororder4 -1.9524012 1.640244 -5.247905 1.121749 4000.000 1.0003492 -
condition_labelPolysemy:as.factororder2 0.3577327 1.923900 -3.269800 4.197150 4000.000 0.9999023 -
condition_labelPolysemy:as.factororder3 2.4386341 1.931625 -1.274677 6.345777 4000.000 0.9995361 -
condition_labelPolysemy:as.factororder4 0.3125015 1.856240 -3.309687 3.948314 4000.000 1.0000006 -
kable(convert_stan_to_dataframe(obj_first_unambig_child),
     caption = "Child Unambiguous")
Child Unambiguous
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -3.042559 0.9849422 -5.248135 -1.406009 2300.325 1.002405 *
kable(convert_stan_to_dataframe(obj_first_polysemy_child),
     caption = "Child Polysemy")
Child Polysemy
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept 2.693368 1.106706 0.7209793 5.086964 2051.23 1.001517 *
kable(convert_stan_to_dataframe(obj_first_unambig_adult),
     caption = "Adult Unambiguous")
Adult Unambiguous
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept -4.918188 1.513809 -8.604185 -2.697794 2368.978 1.003281 *
kable(convert_stan_to_dataframe(obj_first_polysemy_adult),
     caption = "Adult Polysemy")
Adult Polysemy
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept 4.257288 1.299581 2.090701 7.239842 2602.776 0.9994165 *

2 Experiment 2 - sorting

## Warning in bind_rows_(x, .id): binding factor and character vector,
## coercing into character vector
## Warning in bind_rows_(x, .id): binding character and factor vector,
## coercing into character vector
## Warning in bind_rows_(x, .id): binding factor and character vector,
## coercing into character vector
## Warning in bind_rows_(x, .id): binding character and factor vector,
## coercing into character vector

Object_label condition_label response.mean response.ci.low response.ci.high
Standard Unambiguous 1.000000 1.000000 1.000000
Standard Polysemy 0.984375 0.953125 1.000000
Shape & Material Match Unambiguous 1.000000 1.000000 1.000000
Shape & Material Match Polysemy 0.984375 0.953125 1.000000
Shape Match Unambiguous 0.875000 0.718750 0.984375
Shape Match Polysemy 0.375000 0.187500 0.593750
Material Match Unambiguous 0.140625 0.015625 0.296875
Material Match Polysemy 0.609375 0.390625 0.812500
No Match Unambiguous 0.000000 0.000000 0.000000
No Match Polysemy 0.015625 0.000000 0.046875
## Compiling the C++ model
## Start sampling
## 
## SAMPLING FOR MODEL 'gaussian(identity) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.318304 seconds (Warm-up)
##                0.28512 seconds (Sampling)
##                0.603424 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'gaussian(identity) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.323734 seconds (Warm-up)
##                0.265222 seconds (Sampling)
##                0.588956 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'gaussian(identity) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.314667 seconds (Warm-up)
##                0.291179 seconds (Sampling)
##                0.605846 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'gaussian(identity) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.318069 seconds (Warm-up)
##                0.279225 seconds (Sampling)
##                0.597294 seconds (Total)
## Compiling the C++ model
## Start sampling
## 
## SAMPLING FOR MODEL 'gaussian(identity) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.346214 seconds (Warm-up)
##                0.312278 seconds (Sampling)
##                0.658492 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'gaussian(identity) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.363301 seconds (Warm-up)
##                0.274117 seconds (Sampling)
##                0.637418 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'gaussian(identity) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.360087 seconds (Warm-up)
##                0.261644 seconds (Sampling)
##                0.621731 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'gaussian(identity) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.347962 seconds (Warm-up)
##                0.243498 seconds (Sampling)
##                0.59146 seconds (Total)
Children shape match (lower in polysemy condition)
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept 0.6284987 0.0658381 0.4984367 0.7602331 1412.140 1.000804 *
condition_label.L -0.3564537 0.0955207 -0.5468839 -0.1699841 1397.614 1.000770 *
Children material match (higher in polysemy condition)
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept 0.3754633 0.0722458 0.2265267 0.5153060 640.6423 1.008115 *
condition_label.L 0.3377231 0.0990098 0.1395509 0.5300239 667.8182 1.003904 *
Children shape match (lower in polysemy condition) with item order effect
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept 0.6228120 0.0643018 0.4954988 0.7529499 1303.056 1.0045674 *
condition_label.L -0.3526086 0.0918181 -0.5289497 -0.1706050 1236.817 1.0037907 *
scaleseq_items 0.0279595 0.0246143 -0.0199844 0.0778845 4000.000 0.9994114 -
Children material match (higher in polysemy condition) with item order effect
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept 0.3653354 0.0723321 0.2233976 0.5037863 581.1796 1.0101662 *
condition_label.L 0.3363461 0.1004266 0.1332592 0.5288822 684.4867 1.0053844 *
scaleseq_items -0.0350822 0.0192009 -0.0731600 0.0046804 4000.0000 0.9999587 -
Children shape match (lower in polysemy condition) with list effect
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept 0.5290754 0.1236389 0.2812928 0.7689620 2100.175 1.001387 *
condition_label.L -0.6585056 0.1702302 -0.9909300 -0.3304163 1760.838 1.000591 *
as.factororder2 0.1264647 0.1660331 -0.2077182 0.4522777 2193.907 1.000487 -
as.factororder3 0.2541701 0.1720801 -0.0933261 0.5945924 2094.176 1.002771 -
as.factororder4 0.0106971 0.1672448 -0.3112502 0.3666812 2160.998 1.001362 -
condition_label.L:as.factororder2 0.7059174 0.2331483 0.2406493 1.1623659 1806.764 1.000262 *
condition_label.L:as.factororder3 0.4335330 0.2344826 -0.0498325 0.8900840 1980.257 1.000376 -
condition_label.L:as.factororder4 0.0787045 0.2224547 -0.3541668 0.5303403 1801.495 1.001249 -
Children material match (higher in polysemy condition) with list effect
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept 0.5013933 0.1325811 0.2359387 0.7630440 2365.843 1.0005386 *
condition_label.L 0.7003464 0.1809375 0.3436625 1.0592840 2244.016 1.0003006 *
as.factororder2 -0.1871060 0.1847360 -0.5427178 0.1853323 2462.802 1.0012957 -
as.factororder3 -0.3742410 0.1797635 -0.7256491 -0.0235435 2458.702 1.0009142 *
as.factororder4 0.0360624 0.1803100 -0.3292777 0.3732621 2184.320 1.0021188 -
condition_label.L:as.factororder2 -0.6961279 0.2481002 -1.1786086 -0.2126392 2361.326 1.0006690 *
condition_label.L:as.factororder3 -0.5219674 0.2487127 -1.0200244 -0.0244300 2207.182 0.9997524 *
condition_label.L:as.factororder4 -0.2221950 0.2413959 -0.7051453 0.2516740 2198.052 1.0002162 -

2.1  Adults

## Warning in bind_rows_(x, .id): binding factor and character vector,
## coercing into character vector
## Warning in bind_rows_(x, .id): binding character and factor vector,
## coercing into character vector
## Warning in bind_rows_(x, .id): binding factor and character vector,
## coercing into character vector
## Warning in bind_rows_(x, .id): binding character and factor vector,
## coercing into character vector

Object_label condition_label response.mean response.ci.low response.ci.high
Standard Unambiguous 1.0000000 1.0000000 1.0000000
Standard Polysemy 1.0000000 1.0000000 1.0000000
Shape & Material Match Unambiguous 1.0000000 1.0000000 1.0000000
Shape & Material Match Polysemy 0.9705882 0.9117647 1.0000000
Shape Match Unambiguous 0.8125000 0.6093750 0.9687500
Shape Match Polysemy 0.1911765 0.0441176 0.3676471
Material Match Unambiguous 0.0468750 0.0000000 0.1406250
Material Match Polysemy 0.7352941 0.5588235 0.8974265
No Match Unambiguous 0.0000000 0.0000000 0.0000000
No Match Polysemy 0.0000000 0.0000000 0.0000000
## Compiling the C++ model
## Start sampling
## 
## SAMPLING FOR MODEL 'gaussian(identity) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.334096 seconds (Warm-up)
##                0.272467 seconds (Sampling)
##                0.606563 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'gaussian(identity) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.338922 seconds (Warm-up)
##                0.252301 seconds (Sampling)
##                0.591223 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'gaussian(identity) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.35603 seconds (Warm-up)
##                0.269769 seconds (Sampling)
##                0.625799 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'gaussian(identity) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.342626 seconds (Warm-up)
##                0.281985 seconds (Sampling)
##                0.624611 seconds (Total)
## Compiling the C++ model
## Start sampling
## 
## SAMPLING FOR MODEL 'gaussian(identity) brms-model' NOW (CHAIN 1).
## 
## Chain 1, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 1, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 1, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 1, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 1, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 1, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 1, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 1, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 1, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 1, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 1, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 1, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.357904 seconds (Warm-up)
##                0.279492 seconds (Sampling)
##                0.637396 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'gaussian(identity) brms-model' NOW (CHAIN 2).
## 
## Chain 2, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 2, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 2, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 2, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 2, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 2, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 2, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 2, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 2, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 2, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 2, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 2, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.368942 seconds (Warm-up)
##                0.259792 seconds (Sampling)
##                0.628734 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'gaussian(identity) brms-model' NOW (CHAIN 3).
## 
## Chain 3, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 3, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 3, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 3, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 3, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 3, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 3, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 3, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 3, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 3, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 3, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 3, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.381461 seconds (Warm-up)
##                0.270225 seconds (Sampling)
##                0.651686 seconds (Total)
## 
## 
## SAMPLING FOR MODEL 'gaussian(identity) brms-model' NOW (CHAIN 4).
## 
## Chain 4, Iteration:    1 / 2000 [  0%]  (Warmup)
## Chain 4, Iteration:  200 / 2000 [ 10%]  (Warmup)
## Chain 4, Iteration:  400 / 2000 [ 20%]  (Warmup)
## Chain 4, Iteration:  600 / 2000 [ 30%]  (Warmup)
## Chain 4, Iteration:  800 / 2000 [ 40%]  (Warmup)
## Chain 4, Iteration: 1000 / 2000 [ 50%]  (Warmup)
## Chain 4, Iteration: 1001 / 2000 [ 50%]  (Sampling)
## Chain 4, Iteration: 1200 / 2000 [ 60%]  (Sampling)
## Chain 4, Iteration: 1400 / 2000 [ 70%]  (Sampling)
## Chain 4, Iteration: 1600 / 2000 [ 80%]  (Sampling)
## Chain 4, Iteration: 1800 / 2000 [ 90%]  (Sampling)
## Chain 4, Iteration: 2000 / 2000 [100%]  (Sampling)
##  Elapsed Time: 0.342094 seconds (Warm-up)
##                0.279265 seconds (Sampling)
##                0.621359 seconds (Total)
Adults Shape match (lower in polysemy condition)
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept 0.5012592 0.0638496 0.3781891 0.6266477 1108.7260 1.002196 *
condition_label.L -0.4409511 0.0914113 -0.6283881 -0.2651783 981.3098 1.002561 *
Adults Material match (higher in polysemy condition)
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept 0.3907080 0.0555038 0.2808900 0.5027294 1064.198 1.002529 *
condition_label.L 0.4890035 0.0756413 0.3480519 0.6403309 1146.333 1.008134 *
Adults Shape match (lower in polysemy condition) with item order effect
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept 0.5044989 0.0651119 0.3818475 0.6343617 674.2651 1.0029339 *
condition_label.L -0.4400917 0.0934596 -0.6205864 -0.2540861 695.6893 1.0027466 *
scaleseq_items 0.0306587 0.0192390 -0.0071262 0.0689817 4000.0000 0.9998967 -
Adults Material match (higher in polysemy condition) with item order effect
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept 0.3913567 0.0556007 0.2821919 0.5004927 1065.790 1.0022617 *
condition_label.L 0.4875236 0.0787351 0.3345661 0.6458055 1168.872 1.0002591 *
scaleseq_items -0.0101747 0.0193685 -0.0474325 0.0269161 4000.000 0.9995808 -
Adults Shape match (lower in polysemy condition) with list effect
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept 0.3412865 0.1187568 0.1042156 0.5812695 2203.155 1.001141 *
condition_label.L -0.2166554 0.1652288 -0.5358250 0.1128446 1685.654 1.000152 -
as.factororder2 0.0350974 0.1665923 -0.2939479 0.3687458 2032.700 1.000236 -
as.factororder3 0.4402020 0.1649233 0.1203598 0.7768351 2169.979 1.000316 *
as.factororder4 0.1625287 0.1646769 -0.1647612 0.4861583 2194.618 1.000632 -
condition_label.L:as.factororder2 -0.3125455 0.2365969 -0.7953276 0.1574251 1599.094 1.003123 -
condition_label.L:as.factororder3 -0.0899130 0.2274175 -0.5478019 0.3627851 1695.239 1.000558 -
condition_label.L:as.factororder4 -0.4060044 0.2177526 -0.8342130 0.0126461 2012.668 1.001532 -
Adults Material match (higher in polysemy condition) with list effect
Estimate Est.Error l.95..CI u.95..CI Eff.Sample Rhat Diff_from_zero
Intercept 0.4038196 0.1162098 0.1743811 0.6270174 2601.000 0.9994852 *
condition_label.L 0.5782294 0.1640005 0.2527588 0.9030761 2162.548 1.0022864 *
as.factororder2 0.1248648 0.1662692 -0.2019916 0.4407658 2908.724 1.0008046 -
as.factororder3 -0.1527257 0.1647413 -0.4698936 0.1737877 2794.892 1.0000032 -
as.factororder4 -0.0017436 0.1604867 -0.3168405 0.3146724 2631.280 0.9999636 -
condition_label.L:as.factororder2 -0.1887090 0.2358311 -0.6493804 0.2692028 2529.499 0.9999348 -
condition_label.L:as.factororder3 -0.2233393 0.2280599 -0.6637114 0.2341126 2275.786 1.0012328 -
condition_label.L:as.factororder4 -0.0018922 0.2278718 -0.4590293 0.4448887 2265.186 1.0021053 -
child.sort.summary$AgeGroup = "Children"
adult.sort.summary$AgeGroup = "Adults"
combine_graph = bind_rows(adult.sort.summary,child.sort.summary)

combine_graph$AgeGroup = ordered(combine_graph$AgeGroup, levels = c("Children","Adults"))
kable(combine_graph)
Object_label condition_label response.mean response.ci.low response.ci.high AgeGroup
Standard Unambiguous 1.0000000 1.0000000 1.0000000 Adults
Standard Polysemy 1.0000000 1.0000000 1.0000000 Adults
Shape & Material Match Unambiguous 1.0000000 1.0000000 1.0000000 Adults
Shape & Material Match Polysemy 0.9705882 0.9117647 1.0000000 Adults
Shape Match Unambiguous 0.8125000 0.6093750 0.9687500 Adults
Shape Match Polysemy 0.1911765 0.0441176 0.3676471 Adults
Material Match Unambiguous 0.0468750 0.0000000 0.1406250 Adults
Material Match Polysemy 0.7352941 0.5588235 0.8974265 Adults
No Match Unambiguous 0.0000000 0.0000000 0.0000000 Adults
No Match Polysemy 0.0000000 0.0000000 0.0000000 Adults
Standard Unambiguous 1.0000000 1.0000000 1.0000000 Children
Standard Polysemy 0.9843750 0.9531250 1.0000000 Children
Shape & Material Match Unambiguous 1.0000000 1.0000000 1.0000000 Children
Shape & Material Match Polysemy 0.9843750 0.9531250 1.0000000 Children
Shape Match Unambiguous 0.8750000 0.7187500 0.9843750 Children
Shape Match Polysemy 0.3750000 0.1875000 0.5937500 Children
Material Match Unambiguous 0.1406250 0.0156250 0.2968750 Children
Material Match Polysemy 0.6093750 0.3906250 0.8125000 Children
No Match Unambiguous 0.0000000 0.0000000 0.0000000 Children
No Match Polysemy 0.0156250 0.0000000 0.0468750 Children
ggplot(combine_graph, aes(Object_label, response.mean, fill = Object_label))+
  facet_wrap(AgeGroup~condition_label)+
  geom_bar(stat="identity")+
  geom_errorbar(data = combine_graph, aes(ymax = ifelse(response.mean > 0.5,response.ci.low,response.ci.high), 
                    ymin = response.mean
                      ), width=0, position = dodge, size = 1.1) +
  ylim(c(0,1))+
  ylab("Proportion sorting object into target category")+
  geom_hline(yintercept = 0.5, lty = 2)+
  theme_cowplot()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank())+
  labs(fill = "Object Type")+
  scale_fill_brewer(palette="Set1")

child.sort.strat$AgeGroup = "Children"
adult.sort.strat$AgeGroup = "Adults"
combine_graph.sort = bind_rows(adult.sort.strat,child.sort.strat)
combine_graph.sort$categorizations_label = gsub(" ", "\n", combine_graph.sort$categorizations_label, fixed = TRUE)

combine_graph.sort$AgeGroup = ordered(combine_graph.sort$AgeGroup, levels = c("Children","Adults"))
combine_graph.sort$condition_label = ordered(combine_graph.sort$condition_label, levels = c("Unambiguous","Polysemy"))

ggplot(combine_graph.sort, aes(y = response,categorizations_label, fill = categorizations_label))+
  geom_bar(stat = "identity")+
  facet_wrap(AgeGroup~condition_label)+
  xlab("Sorting Strategy")+
  ylab("Count of participants")+
  guides(fill=FALSE)+
  scale_fill_brewer(palette="Set1")