library(tidyverse)
## Warning: package 'tidyverse' was built under R version 3.4.2
## Loading tidyverse: ggplot2
## Loading tidyverse: tibble
## Loading tidyverse: tidyr
## Loading tidyverse: readr
## Loading tidyverse: purrr
## Loading tidyverse: dplyr
## Warning: package 'readr' was built under R version 3.4.2
## Conflicts with tidy packages ----------------------------------------------
## filter(): dplyr, stats
## lag():    dplyr, stats
library(janitor)
library(car)
## 
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode
## The following object is masked from 'package:purrr':
## 
##     some
cces <- read_csv("https://raw.githubusercontent.com/ryanburge/cces/master/CCES%20for%20Methods/small_cces.csv")
## Warning: Missing column names filled in: 'X1' [1]
## Warning: Duplicated column names deduplicated: 'X1' => 'X1_1' [2]
## Parsed with column specification:
## cols(
##   .default = col_integer()
## )
## See spec(...) for full column specifications.
cces %>% filter(state==41) %>% filter(vote16==2) %>% tabyl(vote16)
##   vote16   n percent
## 1      2 409       1
cces %>% filter(state==41) %>% filter(vote16<2) %>% tabyl(vote16)
##   vote16   n percent
## 1      1 296       1
cces %>% filter(state==41) %>% filter(vote16<3) %>% tabyl(vote16)
##   vote16   n   percent
## 1      1 296 0.4198582
## 2      2 409 0.5801418
cces %>% filter(sexuality==2|sexuality==3) %>% filter(pid7==4) %>% tabyl(pid7)
##   pid7   n percent
## 1    4 259       1
cces %>% filter(sexuality==2|sexuality==3) %>% filter(pid7==5|pid7==6|pid7==7) %>% tabyl(pid7)
##   pid7  n  percent
## 1    5 61 0.286385
## 2    6 85 0.399061
## 3    7 67 0.314554
cces %>% crosstab(attend,gaym)
##   attend     1    2   8 9
## 1      1  1227 3833  41 0
## 2      2  4907 6514  99 1
## 3      3  3262 2032  38 0
## 4      4  6388 2871  79 0
## 5      5 10547 4043 118 0
## 6      6 14997 2777  86 0
## 7      7   370  324  13 0
## 8      8    20   13   0 0
cces %>% crosstab(attend,religion)
##   attend    1    2   3  4   5   6   7  8    9   10   11   12 98
## 1      1 3509  726 127 39  60 104  27 24    9    7  201  260  8
## 2      2 6054 3500 501 76 152 117  48 45   23   33  550  406 16
## 3      3 2485 1584  60 62 146  50  53 63   25   52  478  261 13
## 4      4 3671 2856  61 74 396  57 108 89   75  203 1232  508  8
## 5      5 4929 3353  88 67 401  65 178 47  320  905 3402  943 10
## 6      6 2017 1749  28 44 387  28 203 21 3562 2782 5849 1177 13
## 7      7  210  107   4  0   4  15   4  9   10   11  269   63  1
## 8      8   13    5   1  0   0   0   0  1    1    0    5    3  4
pew <- cces %>% group_by(race) %>% summarise(md=median(income))
pew %>% ggplot(.,aes(x=race, y=md)) + geom_col()

pew <- cces %>% filter(union==1|union==2) %>% group_by(race) %>% summarise(md=median(income))
pew <- cces %>% filter(union==3) %>% group_by(race) %>% summarise(md=median(income))

knitr::opts_chunk$set(echo = TRUE)

pew %>% ggplot(.,aes(x=race, y=md)) + geom_col()

pew %>% ggplot(.,aes(x=race, y=md)) + geom_col()

summary(cars)
##      speed           dist       
##  Min.   : 4.0   Min.   :  2.00  
##  1st Qu.:12.0   1st Qu.: 26.00  
##  Median :15.0   Median : 36.00  
##  Mean   :15.4   Mean   : 42.98  
##  3rd Qu.:19.0   3rd Qu.: 56.00  
##  Max.   :25.0   Max.   :120.00