Analysis of Health & Economic Impact using US NOAA Data

Synopsis

Storms and other severe weather events can cause both public health and economic problems for communities and municipalities. Many severe events can result in fatalities, injuries, and property damage, and preventing such outcomes to the extent possible is a key concern. This project involves exploring the U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database. This database tracks characteristics of major storms and weather events in the United States, including when and where they occur, as well as estimates of any fatalities, injuries, and property damage.

Here we are trying to find answer on :

  1. Across the United States, which types of events are most harmful with respect to population health?

    — Our analysis found that TORNADO is most harful which caused maximum death/fatalties.

  2. Across the United States, which types of events have the greatest economic consequences?

    — Our analysis found that FLOOD is caused most economical damages.


Pre-processing

Call all required libraries.

library(ggplot2) # required for plotting
library(dplyr)   # required for mutate function
## Warning: package 'dplyr' was built under R version 3.4.2
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

Data Processing

# For this analysis data taken from https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2. 
fulldata <- read.csv('repdata_data_StormData.csv.bz2', header = TRUE, sep = ",")
str(fulldata)
## 'data.frame':    902297 obs. of  37 variables:
##  $ STATE__   : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_DATE  : Factor w/ 16335 levels "1/1/1966 0:00:00",..: 6523 6523 4242 11116 2224 2224 2260 383 3980 3980 ...
##  $ BGN_TIME  : Factor w/ 3608 levels "00:00:00 AM",..: 272 287 2705 1683 2584 3186 242 1683 3186 3186 ...
##  $ TIME_ZONE : Factor w/ 22 levels "ADT","AKS","AST",..: 7 7 7 7 7 7 7 7 7 7 ...
##  $ COUNTY    : num  97 3 57 89 43 77 9 123 125 57 ...
##  $ COUNTYNAME: Factor w/ 29601 levels "","5NM E OF MACKINAC BRIDGE TO PRESQUE ISLE LT MI",..: 13513 1873 4598 10592 4372 10094 1973 23873 24418 4598 ...
##  $ STATE     : Factor w/ 72 levels "AK","AL","AM",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ EVTYPE    : Factor w/ 985 levels "   HIGH SURF ADVISORY",..: 834 834 834 834 834 834 834 834 834 834 ...
##  $ BGN_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ BGN_AZI   : Factor w/ 35 levels "","  N"," NW",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_LOCATI: Factor w/ 54429 levels "","- 1 N Albion",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_DATE  : Factor w/ 6663 levels "","1/1/1993 0:00:00",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_TIME  : Factor w/ 3647 levels ""," 0900CST",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ COUNTY_END: num  0 0 0 0 0 0 0 0 0 0 ...
##  $ COUNTYENDN: logi  NA NA NA NA NA NA ...
##  $ END_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ END_AZI   : Factor w/ 24 levels "","E","ENE","ESE",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_LOCATI: Factor w/ 34506 levels "","- .5 NNW",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LENGTH    : num  14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
##  $ WIDTH     : num  100 150 123 100 150 177 33 33 100 100 ...
##  $ F         : int  3 2 2 2 2 2 2 1 3 3 ...
##  $ MAG       : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ FATALITIES: num  0 0 0 0 0 0 0 0 1 0 ...
##  $ INJURIES  : num  15 0 2 2 2 6 1 0 14 0 ...
##  $ PROPDMG   : num  25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
##  $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 17 ...
##  $ CROPDMG   : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ WFO       : Factor w/ 542 levels ""," CI","$AC",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ STATEOFFIC: Factor w/ 250 levels "","ALABAMA, Central",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ ZONENAMES : Factor w/ 25112 levels "","                                                                                                               "| __truncated__,..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LATITUDE  : num  3040 3042 3340 3458 3412 ...
##  $ LONGITUDE : num  8812 8755 8742 8626 8642 ...
##  $ LATITUDE_E: num  3051 0 0 0 0 ...
##  $ LONGITUDE_: num  8806 0 0 0 0 ...
##  $ REMARKS   : Factor w/ 436781 levels "","-2 at Deer Park\n",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ REFNUM    : num  1 2 3 4 5 6 7 8 9 10 ...
# Take only required columns to make the processing faster
stormdata <- fulldata[,c('EVTYPE', 'FATALITIES', 'INJURIES', 'PROPDMG', 'PROPDMGEXP', 'CROPDMG', 'CROPDMGEXP')]
dim(stormdata)
## [1] 902297      7
head(stormdata)
##    EVTYPE FATALITIES INJURIES PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP
## 1 TORNADO          0       15    25.0          K       0           
## 2 TORNADO          0        0     2.5          K       0           
## 3 TORNADO          0        2    25.0          K       0           
## 4 TORNADO          0        2     2.5          K       0           
## 5 TORNADO          0        2     2.5          K       0           
## 6 TORNADO          0        6     2.5          K       0

Analysis on Events which are most harmful with respect to population health

The EVTYPE column holds the name of differen Sorm or whether condition which occured across US. The FATALITIES provided count of deaths due to that Event. Also INJURIES provides count of injury due to that Event. We need to find the total death/injury for each events.

# For Fatalities/death aggrigation based on each EVTYPE
fatal_agg <- aggregate(stormdata$FATALITIES, by = list(stormdata$EVTYPE), FUN = "sum", na.rm = TRUE)
# Add a new column as Type to hold casuality type
fatal_agg$type <- "Fatalities"
names(fatal_agg) <- c("EVTYPE", "Counts", "Type")

# For injury aggrigation based on each EVTYPE
injur_agg <- aggregate(stormdata$INJURIES, by = list(stormdata$EVTYPE), FUN = "sum", na.rm = TRUE)
# Add a new column as Type to hold casuality type
injur_agg$type <- "Injuries"
names(injur_agg) <- c("EVTYPE", "Counts", "Type")

dim(fatal_agg)
## [1] 985   3
dim(injur_agg)
## [1] 985   3
# As there are many EVTYPE, we can see top 20 types
fatal_agg <- fatal_agg[order(fatal_agg$Counts, decreasing = TRUE),][1:20,]
injur_agg <- injur_agg[order(injur_agg$Counts, decreasing = TRUE),][1:20,]
affect_agg <- rbind(fatal_agg, injur_agg)

head(fatal_agg)
##             EVTYPE Counts       Type
## 834        TORNADO   5633 Fatalities
## 130 EXCESSIVE HEAT   1903 Fatalities
## 153    FLASH FLOOD    978 Fatalities
## 275           HEAT    937 Fatalities
## 464      LIGHTNING    816 Fatalities
## 856      TSTM WIND    504 Fatalities
head(injur_agg)
##             EVTYPE Counts     Type
## 834        TORNADO  91346 Injuries
## 856      TSTM WIND   6957 Injuries
## 170          FLOOD   6789 Injuries
## 130 EXCESSIVE HEAT   6525 Injuries
## 464      LIGHTNING   5230 Injuries
## 275           HEAT   2100 Injuries
# Plot the FATALITIES and INJURIES per EVTYPE
g <- ggplot(data = affect_agg, aes(x = EVTYPE, y = Counts, fill = Type))
g <- g + geom_bar(stat = "identity")
g <- g + theme(legend.position = "bottom")
g <- g + theme(axis.text.x = element_text(angle = 60, hjust = 1))
g <- g + labs(x = "Event Types", y = "Count of Events", title = "Events with maximum Fatalities and Injuries across US")
print(g)

Analysis on Events which have the greatest economic consequences

Due to Storm and Other weather condition the Property and Crops damaged. Property damage estimates should be entered as actual dollar amounts, if a reasonably accurate estimate from an insurance company or other qualified individual is available. Within data we have following columns to describe property/crop losses.

PROPDMGEXP = It decribes magnitude of the property loss in Thousand(K), Millions(M), Billions(B)

PROPDMG = The property damage, for actual value (PROPDMG * PROPDMGEXP)

CROPDMGEXP = It decribes magnitude of the crop loss in Thousand(K), Millions(M), Billions(B)

CROPDMG = The crop damage, for actual value (CROPDMG * CROPDMGEXP)

# Get distinct list of PROPDMGEXP and CROPDMGEXP
unique(stormdata$PROPDMGEXP)
##  [1] K M   B m + 0 5 6 ? 4 2 3 h 7 H - 1 8
## Levels:  - ? + 0 1 2 3 4 5 6 7 8 B h H K m M
unique(stormdata$CROPDMGEXP)
## [1]   M K m B ? 0 k 2
## Levels:  ? 0 2 B k K m M
# Convert lower-case values to upper-case
stormdata$PROPDMGEXP <- toupper(stormdata$PROPDMGEXP)
stormdata$CROPDMGEXP <- toupper(stormdata$CROPDMGEXP)

# Add new column 'Prop_Damage' to hold actual property damage value in USD
stormdata <- mutate(stormdata, Prop_Damage = ifelse(PROPDMGEXP == "K", PROPDMG * 1000, ifelse(PROPDMGEXP == "M", PROPDMG * 1000000, ifelse(PROPDMGEXP == "B", PROPDMG * 1000000000, PROPDMG))))

# Add new column 'Crop_Damage' to hold actual crop damage value in USD
stormdata <- mutate(stormdata, Crop_Damage = ifelse(CROPDMGEXP == "K", CROPDMG * 1000, ifelse(CROPDMGEXP == "M", CROPDMG * 1000000, ifelse(CROPDMGEXP == "B", CROPDMG * 1000000000, CROPDMG))))

head(stormdata)
##    EVTYPE FATALITIES INJURIES PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP
## 1 TORNADO          0       15    25.0          K       0           
## 2 TORNADO          0        0     2.5          K       0           
## 3 TORNADO          0        2    25.0          K       0           
## 4 TORNADO          0        2     2.5          K       0           
## 5 TORNADO          0        2     2.5          K       0           
## 6 TORNADO          0        6     2.5          K       0           
##   Prop_Damage Crop_Damage
## 1       25000           0
## 2        2500           0
## 3       25000           0
## 4        2500           0
## 5        2500           0
## 6        2500           0
# Aggrigate data to find Property damage (USD) per EVTYPE
prop_agg <- aggregate(stormdata$Prop_Damage, by = list(stormdata$EVTYPE), FUN = "sum", na.rm = TRUE)
prop_agg$type <- "Property Damage"
names(prop_agg) <- c("EVTYPE","USD","Type")

# Aggrigate data to find Crop damage (USD) per EVTYPE
crop_agg <- aggregate(stormdata$Crop_Damage, by = list(stormdata$EVTYPE), FUN = "sum", na.rm = TRUE)
crop_agg$type <- "Crop Damage"
names(crop_agg) <- c("EVTYPE","USD","Type")

# As there are many EVTYPE, we can see top 20 types
prop_agg <- prop_agg[order(prop_agg$USD, decreasing = TRUE),][1:20,]
crop_agg <- crop_agg[order(crop_agg$USD, decreasing = TRUE),][1:20,]
loss_agg <- rbind(prop_agg, crop_agg)

head(prop_agg)
##                EVTYPE          USD            Type
## 170             FLOOD 144657709807 Property Damage
## 411 HURRICANE/TYPHOON  69305840000 Property Damage
## 834           TORNADO  56937160779 Property Damage
## 670       STORM SURGE  43323536000 Property Damage
## 153       FLASH FLOOD  16140812067 Property Damage
## 244              HAIL  15732267048 Property Damage
head(crop_agg)
##          EVTYPE         USD        Type
## 95      DROUGHT 13972566000 Crop Damage
## 170       FLOOD  5661968450 Crop Damage
## 590 RIVER FLOOD  5029459000 Crop Damage
## 427   ICE STORM  5022113500 Crop Damage
## 244        HAIL  3025954473 Crop Damage
## 402   HURRICANE  2741910000 Crop Damage
# Plot the Property Damage (USD) and Crop Damage (USD) per EVTYPE
g <- ggplot(data = loss_agg, aes(x = EVTYPE, y = USD, fill = Type))
g <- g + geom_bar(stat = "identity")
g <- g + theme(legend.position = "bottom")
g <- g + theme(axis.text.x = element_text(angle = 60, hjust = 1))
g <- g + labs(x = "Event Types", y = "Damages in USD", title = "Events with maximum damages across US")
print(g)

Results

The first data plots tells us that TORNADO causes most casualities (Death/Injuries) in US.

The second data plots tells us that FLOOD causes most ecomonical damages (Property/Crop) in US.