You are involved in a venture.
Option 1: Loses $8000, x1= -8000 Option 2: Loses $0, x2= 0 Option 3: Makes $10000, x3=10000
To figure out the probabilities, just write out the fact that x1 is .5x2 and x3 is .3x2. Since this is a probability distribution function, the probabilities must sum to one.
.5x2 + x2 + .333x2 = 1= (11/6)x2 = x2=6/11 x2 = .545454 x1 = .272727 x3=.181818
We can then write out our probability mass function (PMF).
x = c(-8000,0, 10000)
px=c(6/22, 6/11, 6/33)
#verify pmf
sum(px) #equals 1
## [1] 1
#calculate EX
EX=sum(x*px)
EX #-363.6364
## [1] -363.6364
#Calculate Var(X)
VarX=sum(px*(x-EX)^2) #35504132
VarX
## [1] 35504132
#Calculate SD(X)
SDX=sqrt(VarX) # $5,958.534
n=20
pi=.16
#P(Y>= 6 | n=20, pi = .16)
EY=n*pi
VY=n*pi*(1-pi)
SDY=sqrt(VY)
PY=1-pbinom(5,20,.16)
mylist=c(EY, VY, SDY, PY)
names(mylist)=c("E(Y)", "V(Y)", "SD(Y)", "P(Y)")
mylist
## E(Y) V(Y) SD(Y) P(Y)
## 3.20000000 2.68800000 1.63951212 0.08699685
#Binomial, P(R>=5 | N = 2000, pi = 2/1000)
n2=2000
pi2=2/1000
PR=1-pbinom(4,n2, pi2)
ER=n2*pi2
VR=n2*pi2*(1-pi2)
#Poisson, P(S>=5 | lambda x t = 4)
lambdat=4
PS=1-ppois(4,lambdat)
ES=lambdat
VS=ES
mylist2=c(PR, ER, VR, PS, ES, VS)
names(mylist2)=c("P(R)", "E(R)", "V(R)", "P(S)", "E(S)", "V(S)")
mylist2
## P(R) E(R) V(R) P(S) E(S) V(S)
## 0.3711630 4.0000000 3.9920000 0.3711631 4.0000000 4.0000000
The annual number of industrial accidents occurring in a particular manufacturing plant is known to follow a Poisson distribution with mean 12.
#P(X=12 | Lambda = 12)
PXEQ12=dpois(12, 12)
#P(X<=12 | ...)
PXLTE12 = ppois(12,12)
#P(X>=15 | ...)
PXGTE15=1-ppois(14,12)
#P(10<=X<=15 | ...)
PRange=ppois(15, 12)-ppois(9,12)
#P(X<=k)=.99
Q=qpois(.99,12)
mylist3=c(PXEQ12, PXLTE12, PXGTE15, PRange, Q)
names(mylist3)=c("P(X=12)", "P(X<=12)", "P(X>=15)", "P(10<=X=15)", "P(X<=k)=.99")
mylist3
## P(X=12) P(X<=12) P(X>=15) P(10<=X=15) P(X<=k)=.99
## 0.1143679 0.5759652 0.2279755 0.6020235 21.0000000