Using the “cars” dataset in R, build a linear model for stopping distance as a function of speed and replicate the analysis of your textbook chapter 3 (visualization, quality evaluation of the model, and residual analysis.)
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
lm_cars <- lm(cars$dist ~ cars$speed)
summary(lm_cars)
##
## Call:
## lm(formula = cars$dist ~ cars$speed)
##
## Residuals:
## Min 1Q Median 3Q Max
## -29.069 -9.525 -2.272 9.215 43.201
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17.5791 6.7584 -2.601 0.0123 *
## cars$speed 3.9324 0.4155 9.464 1.49e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.38 on 48 degrees of freedom
## Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
## F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12
plot(cars$speed, cars$dist, xlab = "Speed (mph)", ylab = "Distance", col='blue')
abline(lm_cars, col = "red")
residual <- resid(lm_cars)
summary(residual)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -29.070 -9.525 -2.272 0.000 9.215 43.200
hist(residual, xlab = "Residuals of Distance")
Residual is right skewed.
plot(fitted(lm_cars), resid(lm_cars), col = 'blue')
qqnorm(residual)
qqline(residual)
lm2 <- lm(log(cars$dist) ~ log(cars$speed))
summary(lm2)
##
## Call:
## lm(formula = log(cars$dist) ~ log(cars$speed))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.00215 -0.24578 -0.02898 0.20717 0.88289
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.7297 0.3758 -1.941 0.0581 .
## log(cars$speed) 1.6024 0.1395 11.484 2.26e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4053 on 48 degrees of freedom
## Multiple R-squared: 0.7331, Adjusted R-squared: 0.7276
## F-statistic: 131.9 on 1 and 48 DF, p-value: 2.259e-15
plot(log(cars$speed), log(cars$dist), xlab = 'log: Speed ', ylab = 'log: Distance', col = 'blue')
abline(lm2, col = 'red')
residual2 <- resid(lm2)
summary(residual2)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1.00200 -0.24580 -0.02898 0.00000 0.20720 0.88290
hist(residual2, xlab = "Residuals of Distance")
qqnorm(residual2)
qqline(residual2)
Using Log, Residuals appear to be normal and hetroskedacity is improved.