partie descriptive

importation de la base de donnée

bd<- read.delim("final.txt")
head(bd,10)
##     sexe  Age                    Votre.occupation..
## 1  homme 20.0                      Etudiant /élève.
## 2  homme 20.0                      Etudiant /élève.
## 3  homme 32.5                      Employé/ouvrier.
## 4  homme 32.5 Cadre supérieur /profession libérale.
## 5  homme 20.0                      Etudiant /élève.
## 6  homme 32.5       Agriculteur/artisan/commerçant.
## 7  femme 20.0                      Etudiant /élève.
## 8  homme 32.5       Agriculteur/artisan/commerçant.
## 9  femme 47.5                          Sans emploi.
## 10 homme 20.0                      Etudiant /élève.
##        Vous.avez..passé.le.dernier.réveillon..
## 1  A l<U+0092>hôtel, restaurant, lounge , discothèque
## 2  A l<U+0092>hôtel, restaurant, lounge , discothèque
## 3                                    Chez vous
## 4                                    Chez vous
## 5  A l<U+0092>hôtel, restaurant, lounge , discothèque
## 6                  Chez la famille ou les amis
## 7                                 A l<U+0092>étranger
## 8                  Chez la famille ou les amis
## 9                  Chez la famille ou les amis
## 10                                A l<U+0092>étranger
##    Quel.budget.en.dinars.avez.vous.consacré..pour..le.dernier.réveillon..
## 1                                                                     200
## 2                                                                     400
## 3                                                                      25
## 4                                                                      25
## 5                                                                     200
## 6                                                                      25
## 7                                                                      75
## 8                                                                      75
## 9                                                                      75
## 10                                                                    400
##    Pendant.la.soirée.du..réveillon..vous.avez.consommé..
## 1                   Uniquement des boissons sans  alcool
## 2                               Des boissons alcoolisées
## 3                   Uniquement des boissons sans  alcool
## 4                   Uniquement des boissons sans  alcool
## 5                               Des boissons alcoolisées
## 6                   Uniquement des boissons sans  alcool
## 7                   Uniquement des boissons sans  alcool
## 8                   Uniquement des boissons sans  alcool
## 9                   Uniquement des boissons sans  alcool
## 10                  Uniquement des boissons sans  alcool
summary(bd)
##     sexe         Age                                    Votre.occupation..
##  femme:50   Min.   :20.00   Agriculteur/artisan/commerçant.      :10      
##  homme:50   1st Qu.:20.00   Cadre supérieur /profession libérale.:18      
##             Median :20.00   Employé/ouvrier.                     : 6      
##             Mean   :33.17   Etudiant /élève.                     :49      
##             3rd Qu.:47.50   Sans emploi.                         :17      
##             Max.   :62.50                                                 
##                         Vous.avez..passé.le.dernier.réveillon..
##  A l<U+0092>étranger                               : 8                
##  A l<U+0092>hôtel, restaurant, lounge , discothèque:11                
##  Chez la famille ou les amis                :43                
##  Chez vous                                  :38                
##                                                                
##                                                                
##  Quel.budget.en.dinars.avez.vous.consacré..pour..le.dernier.réveillon..
##  Min.   : 25.00                                                        
##  1st Qu.: 25.00                                                        
##  Median : 75.00                                                        
##  Mean   : 99.25                                                        
##  3rd Qu.: 75.00                                                        
##  Max.   :400.00                                                        
##           Pendant.la.soirée.du..réveillon..vous.avez.consommé..
##  Des boissons alcoolisées            :23                       
##  Uniquement des boissons sans  alcool:77                       
##                                                                
##                                                                
##                                                                
## 
colnames(bd)<-c("sexe","age","occupation","lieu", "budget","consommation")
table(bd$sexe)
## 
## femme homme 
##    50    50
df<-data.frame(group=c("Homme", "Femme") , value = c(50,50))
head(df)
##   group value
## 1 Homme    50
## 2 Femme    50

pie chart : groupe de sexe

library(ggplot2)
library(scales)
bp<- ggplot(data=df, aes(x="", y=value, fill=group))+
  geom_bar(width = 1, stat = "identity")
blank_theme <- theme_minimal()+
  theme(
    axis.title.x = element_blank(),
    axis.title.y = element_blank(),
    panel.border = element_blank(),
    panel.grid=element_blank(),
    axis.ticks = element_blank(),
    plot.title=element_text(size=14, face="bold")
  )
pie <- bp + coord_polar("y", start=0)
pie +scale_fill_brewer(palette="Blues")+theme_minimal()+blank_theme +
  theme(axis.text.x=element_blank())+
  geom_text(aes(y = value/3 + c(0, cumsum(value)[-length(value)]), 
                label = percent(value/100)), size=5)

groupement d’age

summary(bd$age)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   20.00   20.00   20.00   33.17   47.50   62.50
table(bd$age)
## 
##   20 32.5 47.5 62.5 
##   51   19   13   17
df<-data.frame(group=c("[15,25[", "[25,40[","[40,55[","[55,70[") , value = c(51,19,13,17))
head(df)
##     group value
## 1 [15,25[    51
## 2 [25,40[    19
## 3 [40,55[    13
## 4 [55,70[    17
bp<- ggplot(data=df, aes(x="", y=value, fill=group))+
  geom_bar(width = 1, stat = "identity")
blank_theme <- theme_minimal()+
  theme(
    axis.title.x = element_blank(),
    axis.title.y = element_blank(),
    panel.border = element_blank(),
    panel.grid=element_blank(),
    axis.ticks = element_blank(),
    plot.title=element_text(size=14, face="bold")
  )
pie <- bp + coord_polar("y", start=0)
pie +scale_fill_brewer(palette="Blues")+theme_minimal()+blank_theme +
  theme(axis.text.x=element_blank())+
  geom_text(aes(y = value/3 + c(0, cumsum(value)[-length(value)]), 
                label = percent(value/100)), size=5) 

les occupations

table(bd$occupation)
## 
##       Agriculteur/artisan/commerçant. 
##                                    10 
## Cadre supérieur /profession libérale. 
##                                    18 
##                      Employé/ouvrier. 
##                                     6 
##                      Etudiant /élève. 
##                                    49 
##                          Sans emploi. 
##                                    17
df<-data.frame(group=c("Etudiant /élève","Employé/ouvrier","Cadre supérieur 
                       /profession libérale","Agriculteur/artisan/commerçant","Sans emploi") , 
               value = c(49,6,18,10,17))
head(df)
##                                                           group value
## 1                                               Etudiant /élève    49
## 2                                               Employé/ouvrier     6
## 3 Cadre supérieur \n                       /profession libérale    18
## 4                                Agriculteur/artisan/commerçant    10
## 5                                                   Sans emploi    17
bp<- ggplot(data=df, aes(x="", y=value, fill=group))+
  geom_bar(width = 1, stat = "identity")
bp

blank_theme <- theme_minimal()+
  theme(
    axis.title.x = element_blank(),
    axis.title.y = element_blank(),
    panel.border = element_blank(),
    panel.grid=element_blank(),
    axis.ticks = element_blank(),
    plot.title=element_text(size=14, face="bold")
  )
pie <- bp + coord_polar("y", start=0)
pie +scale_fill_brewer(palette="Dark2")+theme_minimal()+blank_theme +
theme(axis.text.x=element_blank())+
geom_text(aes(y = value/3 + c(0, cumsum(value)[-length(value)]), 
label = percent(value/100)), size=5) 

les lieux de la soirée

table(bd$lieu)
## 
##                                A l<U+0092>étranger 
##                                           8 
## A l<U+0092>hôtel, restaurant, lounge , discothèque 
##                                          11 
##                 Chez la famille ou les amis 
##                                          43 
##                                   Chez vous 
##                                          38
df<-data.frame(group=c("A l'hôtel, restaurant, lounge , discothèque"
,"Chez vous","A l'étranger","Chez la famille ou les amis") 
, value = c(11,38,8,43))
head(df)
##                                         group value
## 1 A l'hôtel, restaurant, lounge , discothèque    11
## 2                                   Chez vous    38
## 3                                A l'étranger     8
## 4                 Chez la famille ou les amis    43
bp<- ggplot(data=df, aes(x="", y=value, fill=group))+
geom_bar(width = 1, stat = "identity")
bp

blank_theme <- theme_minimal()+
  theme(
    axis.title.x = element_blank(),
    axis.title.y = element_blank(),
    panel.border = element_blank(),
    panel.grid=element_blank(),
    axis.ticks = element_blank(),
    plot.title=element_text(size=14, face="bold")
  )
pie <- bp + coord_polar("y", start=0)
pie +scale_fill_brewer(palette="Blues")+theme_minimal()+blank_theme +
theme(axis.text.x=element_blank())+
geom_text(aes(y = value/3 + c(0, cumsum(value)[-length(value)]), 
label = percent(value/100)), size=5) 

la consommation

table(bd$consommation)
## 
##             Des boissons alcoolisées Uniquement des boissons sans  alcool 
##                                   23                                   77
df<-data.frame(group=c("des boissons alcolisées","des boissons vierges ") , value = c(23,77))
head(df)
##                     group value
## 1 des boissons alcolisées    23
## 2   des boissons vierges     77
bp<- ggplot(data=df, aes(x="", y=value, fill=group))+
geom_bar(width = 1, stat = "identity")
bp

blank_theme <- theme_minimal()+
    theme(
    axis.title.x = element_blank(),
    axis.title.y = element_blank(),
    panel.border = element_blank(),
    panel.grid=element_blank(),
    axis.ticks = element_blank(),
    plot.title=element_text(size=14, face="bold")
  )
pie <- bp + coord_polar("y", start=0)
pie +scale_fill_brewer(palette="Blues")+theme_minimal()+blank_theme +
theme(axis.text.x=element_blank())+
geom_text(aes(y = value/3 + c(0, cumsum(value)[-length(value)]), 
label = percent(value/100)), size=5) 

#boxplot ##age&budget

p<-ggplot(bd, aes(factor(age),budget) ) 
p+geom_boxplot()

p<-ggplot(bd, aes(factor(sexe),budget) )+geom_boxplot(outlier.size = 3)+coord_flip()
p

#epartition de l’age selon le sexe

p <- ggplot(bd, aes(factor(sexe),age)) + geom_boxplot()+ geom_jitter()
p

opaa<-bd$age[which(bd$sexe == "homme")]
opaa
##  [1] 20.0 20.0 32.5 32.5 20.0 32.5 32.5 20.0 32.5 20.0 32.5 32.5 47.5 47.5
## [15] 32.5 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 32.5 20.0 20.0 32.5 32.5
## [29] 20.0 20.0 20.0 20.0 32.5 62.5 32.5 62.5 47.5 20.0 47.5 20.0 47.5 62.5
## [43] 62.5 62.5 62.5 62.5 62.5 47.5 62.5 62.5
summary(opaa)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   20.00   20.00   32.50   35.05   47.50   62.50
oppa2<-bd$age[which(bd$sexe == "femme")]
summary(oppa2)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    20.0    20.0    20.0    31.3    47.5    62.5

boxplot du budget selon le sexe

p <- ggplot(bd, aes(factor(sexe),budget)) + geom_boxplot()+ geom_jitter()
p

opaa<-bd$budget[which(bd$sexe == "homme")]
opaa
##  [1] 200 400  25  25 200  25  75 400 200  75  25  75  75  75  25  25  75
## [18]  25  75  25  25 200  25  25  25  25  25  25  75  25  75  75  25  75
## [35] 200 400  75  75  75  25  25  25  25  25  75  75  75 200 200 200
summary(opaa)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    25.0    25.0    75.0    92.5    75.0   400.0
oppa2<-bd$budget[which(bd$sexe == "femme")]
summary(oppa2)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##      25      25      75     106      75     400

histogramme

qplot(factor(budget) , data=bd , geom="bar", fill=factor(sexe))

qplot(factor(budget) , data=bd , geom="bar", fill=factor(lieu))

qplot(factor(budget) , data=bd , geom="bar", fill=factor(occupation))

qplot(factor(budget) , data=bd , geom="bar", fill=factor(consommation))

sas

#intialisation 

ypesr<-vector(length=20 , "numeric")
ypesr
##  [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
vi<-bd$budget
ech<-NULL  
for (i in 1:20 ){
  ech<-cbind(ech,sample(vi,20))
  ypesr[i]<-mean(ech[,i])
}
ymoy<-mean(ypesr)
ymoy 
## [1] 92.1875
ic<-matrix(0,20,2)
sc<-vector(length=20,"numeric")
for(i in 1:20 ){
  sc[i]<-(1/19)*sum((ech[,i]-ypesr[i])^2)
  variance_pesr_estime<-0.04*sc
  ic[i,]=c( ypesr[i]-1.96*sqrt(variance_pesr_estime[i]/20) 
,ypesr[i]+1.96*sqrt(variance_pesr_estime[i]/20) )
  langeur<-ic[,2]-ic[,1]
}

plot(c(1:20),ic[,1],ylim=c(min(min(ic[,2]),min(ic[,1]))
,max(max(ic[,2]),max(ic[,1]))),type="o",xaxt =
"n",xlab="les échantillons",ylab="Intervalle de confiance",col="blue")
par(new=TRUE)
plot(c(1:20),ic[,2],ylim=c(min(min(ic[,2]),min(ic[,1]))
                           ,max(max(ic[,2]),max(ic[,1]))),type="o",xaxt =
       "n",xlab="les échantillons",ylab="Intervalle de confiance",cex=1.5,font=3,col="red")

axis(1,at=c(1:20))

moy=mean(ypesr[i])


TAB<-cbind(ypesr,variance_pesr_estime, ic[,1],ic[,2],langeur)
TAB
##        ypesr variance_pesr_estime                       langeur
##  [1,] 123.75            540.72368 113.55872 133.94128 20.382562
##  [2,] 100.00            526.31579  89.94541 110.05459 20.109176
##  [3,] 112.50            559.21053 102.13597 122.86403 20.728064
##  [4,]  78.75            340.19737  70.66637  86.83363 16.167265
##  [5,]  75.00            184.21053  69.05163  80.94837 11.896749
##  [6,] 118.75            570.72368 108.27982 129.22018 20.940354
##  [7,]  96.25            377.03947  87.73990 104.76010 17.020193
##  [8,]  92.50            345.00000  84.35951 100.64049 16.280983
##  [9,]  97.50            536.57895  87.34785 107.65215 20.304294
## [10,] 102.50            397.10526  93.76639 111.23361 17.467224
## [11,]  93.75            504.93421  83.90176 103.59824 19.696473
## [12,]  72.50            189.21053  66.47144  78.52856 12.057124
## [13,]  62.50            322.36842  54.63104  70.36896 15.737919
## [14,] 102.50            515.52632  92.54901 112.45099 19.901989
## [15,]  97.50            536.57895  87.34785 107.65215 20.304294
## [16,]  72.50            307.63158  64.81301  80.18699 15.373988
## [17,] 105.00            385.78947  96.39172 113.60828 17.216555
## [18,]  53.75             71.77632  50.03694  57.46306  7.426115
## [19,] 126.25            853.88158 113.44322 139.05678 25.613557
## [20,]  60.00            114.21053  55.31625  64.68375  9.367509
colnames(TAB)<-c("Y_PESR" , "var_PESR", "IC_PESR_MIN" , "IC_PESR_MAX" ,"longueur_IC")
TAB
##       Y_PESR  var_PESR IC_PESR_MIN IC_PESR_MAX longueur_IC
##  [1,] 123.75 540.72368   113.55872   133.94128   20.382562
##  [2,] 100.00 526.31579    89.94541   110.05459   20.109176
##  [3,] 112.50 559.21053   102.13597   122.86403   20.728064
##  [4,]  78.75 340.19737    70.66637    86.83363   16.167265
##  [5,]  75.00 184.21053    69.05163    80.94837   11.896749
##  [6,] 118.75 570.72368   108.27982   129.22018   20.940354
##  [7,]  96.25 377.03947    87.73990   104.76010   17.020193
##  [8,]  92.50 345.00000    84.35951   100.64049   16.280983
##  [9,]  97.50 536.57895    87.34785   107.65215   20.304294
## [10,] 102.50 397.10526    93.76639   111.23361   17.467224
## [11,]  93.75 504.93421    83.90176   103.59824   19.696473
## [12,]  72.50 189.21053    66.47144    78.52856   12.057124
## [13,]  62.50 322.36842    54.63104    70.36896   15.737919
## [14,] 102.50 515.52632    92.54901   112.45099   19.901989
## [15,]  97.50 536.57895    87.34785   107.65215   20.304294
## [16,]  72.50 307.63158    64.81301    80.18699   15.373988
## [17,] 105.00 385.78947    96.39172   113.60828   17.216555
## [18,]  53.75  71.77632    50.03694    57.46306    7.426115
## [19,] 126.25 853.88158   113.44322   139.05678   25.613557
## [20,]  60.00 114.21053    55.31625    64.68375    9.367509

avec remise

set.seed(100)
ic=matrix(0,20,2)
vari=vector(length=20,"numeric")
ypear=vector(length=20,"numeric")

ech=NULL
for (i in 1:20){
  ech<-cbind(ech,sample(vi,20,replace=TRUE)     )
  ypear[i]=mean(ech[,i])
}

ymoy=mean(ypear)
ymoy
## [1] 97.0625
s=vector("length"=20,"numeric")
for(i in 1:20)
{s[i]=(1/19)*sum((ech[,i]-ypear[i])^2)}

variance_pear_estim<-s/20 
variance_pear_estim
##  [1]  657.89474  703.61842   86.43092 1172.36842  461.84211  764.72039
##  [7]  896.29934  721.95724  896.29934  191.69408  665.37829  642.35197
## [13]  458.79934  271.71053  425.24671  665.37829  532.48355  470.72368
## [19]  665.37829  147.69737
for(i in 1:20){
  ic[i,]=c(ypear[i]-1.96*sqrt(variance_pear_estim[i]/20),ypear[i]
           +1.96*sqrt(variance_pear_estim[i]/20))}
ic
##            [,1]      [,2]
##  [1,]  88.75863 111.24137
##  [2,] 115.87455 139.12545
##  [3,]  54.67549  62.82451
##  [4,] 144.99372 175.00628
##  [5,]  75.58137  94.41863
##  [6,]  99.13028 123.36972
##  [7,] 100.62898 126.87102
##  [8,]  86.97403 110.52597
##  [9,] 100.62898 126.87102
## [10,]  60.18200  72.31800
## [11,]  97.44487 120.05513
## [12,]  80.14221 102.35779
## [13,]  89.36245 108.13755
## [14,]  87.77572 102.22428
## [15,]  69.71222  87.78778
## [16,]  97.44487 120.05513
## [17,]  71.13667  91.36333
## [18,]  72.99124  92.00876
## [19,]  97.44487 120.05513
## [20,]  47.17368  57.82632
longeur_pear<-ic[,2]-ic[,1]
longeur_pear
##  [1] 22.482742 23.250895  8.149025 30.012566 18.837264 24.239430 26.242041
##  [8] 23.551947 26.242041 12.135996 22.610251 22.215577 18.775109 14.448551
## [15] 18.075551 22.610251 20.226660 19.017529 22.610251 10.652645
plot(c(1:20),ic[,1],ylim=c(min(min(ic[,2]),min(ic[,1])),max(max(ic[,2]),max(ic[,1]))),
     type="o",xaxt
     = "n",xlab="les échantillons",ylab="Intervalle de confiance",col="blue")
par(new=TRUE)
plot(c(1:20),ic[,2],ylim=c(min(min(ic[,2]),min(ic[,1])),max(max(ic[,2])
                                                            ,max(ic[,1]))),type="o",xaxt
     = "n",xlab="les échantillons",ylab="Intervalle de confiance",cex=1.5,font=3,col="red")
axis(1,at=c(1:20))

TAB2<-cbind(ypear,variance_pear_estim , ic [,1] , ic[,2] , longeur_pear)
TAB2
##        ypear variance_pear_estim                     longeur_pear
##  [1,] 100.00           657.89474  88.75863 111.24137    22.482742
##  [2,] 127.50           703.61842 115.87455 139.12545    23.250895
##  [3,]  58.75            86.43092  54.67549  62.82451     8.149025
##  [4,] 160.00          1172.36842 144.99372 175.00628    30.012566
##  [5,]  85.00           461.84211  75.58137  94.41863    18.837264
##  [6,] 111.25           764.72039  99.13028 123.36972    24.239430
##  [7,] 113.75           896.29934 100.62898 126.87102    26.242041
##  [8,]  98.75           721.95724  86.97403 110.52597    23.551947
##  [9,] 113.75           896.29934 100.62898 126.87102    26.242041
## [10,]  66.25           191.69408  60.18200  72.31800    12.135996
## [11,] 108.75           665.37829  97.44487 120.05513    22.610251
## [12,]  91.25           642.35197  80.14221 102.35779    22.215577
## [13,]  98.75           458.79934  89.36245 108.13755    18.775109
## [14,]  95.00           271.71053  87.77572 102.22428    14.448551
## [15,]  78.75           425.24671  69.71222  87.78778    18.075551
## [16,] 108.75           665.37829  97.44487 120.05513    22.610251
## [17,]  81.25           532.48355  71.13667  91.36333    20.226660
## [18,]  82.50           470.72368  72.99124  92.00876    19.017529
## [19,] 108.75           665.37829  97.44487 120.05513    22.610251
## [20,]  52.50           147.69737  47.17368  57.82632    10.652645
colnames(TAB2)<-cbind("Y_PEAR" , "var_PEAR" , "IC_PEAR_MIN" , "IC_PEAR_MAX" , "longueur_pear")
TAB2
##       Y_PEAR   var_PEAR IC_PEAR_MIN IC_PEAR_MAX longueur_pear
##  [1,] 100.00  657.89474    88.75863   111.24137     22.482742
##  [2,] 127.50  703.61842   115.87455   139.12545     23.250895
##  [3,]  58.75   86.43092    54.67549    62.82451      8.149025
##  [4,] 160.00 1172.36842   144.99372   175.00628     30.012566
##  [5,]  85.00  461.84211    75.58137    94.41863     18.837264
##  [6,] 111.25  764.72039    99.13028   123.36972     24.239430
##  [7,] 113.75  896.29934   100.62898   126.87102     26.242041
##  [8,]  98.75  721.95724    86.97403   110.52597     23.551947
##  [9,] 113.75  896.29934   100.62898   126.87102     26.242041
## [10,]  66.25  191.69408    60.18200    72.31800     12.135996
## [11,] 108.75  665.37829    97.44487   120.05513     22.610251
## [12,]  91.25  642.35197    80.14221   102.35779     22.215577
## [13,]  98.75  458.79934    89.36245   108.13755     18.775109
## [14,]  95.00  271.71053    87.77572   102.22428     14.448551
## [15,]  78.75  425.24671    69.71222    87.78778     18.075551
## [16,] 108.75  665.37829    97.44487   120.05513     22.610251
## [17,]  81.25  532.48355    71.13667    91.36333     20.226660
## [18,]  82.50  470.72368    72.99124    92.00876     19.017529
## [19,] 108.75  665.37829    97.44487   120.05513     22.610251
## [20,]  52.50  147.69737    47.17368    57.82632     10.652645

PISR

library(sampling)
y=bd[,5]## Variable d'interet
x=bd$age## Variable auxiliaire
x=na.omit(x)
n=20
x
##   [1] 20.0 20.0 32.5 32.5 20.0 32.5 20.0 32.5 47.5 20.0 20.0 20.0 20.0 20.0
##  [15] 20.0 20.0 20.0 32.5 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 32.5 32.5
##  [29] 47.5 32.5 47.5 32.5 20.0 20.0 20.0 20.0 20.0 20.0 20.0 32.5 20.0 20.0
##  [43] 47.5 20.0 20.0 32.5 20.0 20.0 20.0 20.0 32.5 20.0 20.0 20.0 20.0 20.0
##  [57] 20.0 32.5 32.5 32.5 20.0 20.0 32.5 20.0 20.0 20.0 32.5 62.5 32.5 47.5
##  [71] 62.5 47.5 20.0 20.0 62.5 47.5 47.5 20.0 32.5 47.5 20.0 47.5 62.5 62.5
##  [85] 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 47.5 47.5 47.5 62.5
##  [99] 62.5 20.0
echantillon=matrix(0,nrow=20,ncol=20)## initialisation de la matrice contenant 20*20 
IC=matrix(0,nrow=20,ncol=2) ## initialisation de la matrice contenant 20 IC
ybarPISR=NULL ## initialisation du vecteur contenant les 20 estimateurs de
varPISR=NULL ## initialisation du vecteur contenant 20 estimateurs de la variance
pik=inclusionprobabilities(x,n) ## les probabilites d'inclusion
pik
##   [1] 0.1205727 0.1205727 0.1959307 0.1959307 0.1205727 0.1959307 0.1205727
##   [8] 0.1959307 0.2863602 0.1205727 0.1205727 0.1205727 0.1205727 0.1205727
##  [15] 0.1205727 0.1205727 0.1205727 0.1959307 0.1205727 0.1205727 0.1205727
##  [22] 0.1205727 0.1205727 0.1205727 0.1205727 0.1205727 0.1959307 0.1959307
##  [29] 0.2863602 0.1959307 0.2863602 0.1959307 0.1205727 0.1205727 0.1205727
##  [36] 0.1205727 0.1205727 0.1205727 0.1205727 0.1959307 0.1205727 0.1205727
##  [43] 0.2863602 0.1205727 0.1205727 0.1959307 0.1205727 0.1205727 0.1205727
##  [50] 0.1205727 0.1959307 0.1205727 0.1205727 0.1205727 0.1205727 0.1205727
##  [57] 0.1205727 0.1959307 0.1959307 0.1959307 0.1205727 0.1205727 0.1959307
##  [64] 0.1205727 0.1205727 0.1205727 0.1959307 0.3767898 0.1959307 0.2863602
##  [71] 0.3767898 0.2863602 0.1205727 0.1205727 0.3767898 0.2863602 0.2863602
##  [78] 0.1205727 0.1959307 0.2863602 0.1205727 0.2863602 0.3767898 0.3767898
##  [85] 0.3767898 0.3767898 0.3767898 0.3767898 0.3767898 0.3767898 0.3767898
##  [92] 0.3767898 0.3767898 0.3767898 0.2863602 0.2863602 0.2863602 0.3767898
##  [99] 0.3767898 0.1205727
#tirage des echantillons:
for (i in 1:20){
  s=UPsystematic(pik)
  echantillon[,i]=y[s==1][1:20]
  ybarPISR[i]=mean(echantillon[,i]) ##les estimateurs de la moyenne
  varPISR[i]=var(echantillon[,i])} ##les estimateurs de la variance
moy_PISR=mean(ybarPISR)

#calcul des intervalles de confiance:
for(i in 1:20){
  IC[i,]=c(ybarPISR[i]-1.96*sqrt(var(ybarPISR)/20), ##borne inf IC
           ybarPISR[i]+1.96*sqrt(var(ybarPISR)/20))} ##borne sup IC
longueurIC=IC[,2]-IC[,1]
#representation des IC:
plot(c(1:20),IC[,1],col="deepskyblue",ylim=c(min(min(IC[,2]),
                                                        min(IC[,1])),
                                                    max(max(IC[,2]),max(IC[,1])))) 

icPISRmin=IC[,1]
icPISRmax=IC[,2]
lines(seq(1,20,by=1),IC[,1],col="deepskyblue")
points(seq(1,20,by=1),IC[,2],col="deeppink")
lines(seq(1,20,by=1),IC[,2],col="deeppink")

TAB3=cbind(ybarPISR,varPISR,icPISRmin,icPISRmax,longueurIC,moy_PISR)
TAB3
##       ybarPISR   varPISR icPISRmin icPISRmax longueurIC moy_PISR
##  [1,]   102.50  9927.632  91.63524 113.36476   21.72953 103.8125
##  [2,]   116.25 12320.724 105.38524 127.11476   21.72953 103.8125
##  [3,]   117.50 13296.053 106.63524 128.36476   21.72953 103.8125
##  [4,]   121.25 13899.671 110.38524 132.11476   21.72953 103.8125
##  [5,]    68.75  3741.776  57.88524  79.61476   21.72953 103.8125
##  [6,]   100.00 10197.368  89.13524 110.86476   21.72953 103.8125
##  [7,]    77.50  4467.105  66.63524  88.36476   21.72953 103.8125
##  [8,]    77.50  9730.263  66.63524  88.36476   21.72953 103.8125
##  [9,]    77.50  9730.263  66.63524  88.36476   21.72953 103.8125
## [10,]   117.50 13296.053 106.63524 128.36476   21.72953 103.8125
## [11,]   143.75 20518.092 132.88524 154.61476   21.72953 103.8125
## [12,]    96.25  9425.987  85.38524 107.11476   21.72953 103.8125
## [13,]   125.00 12171.053 114.13524 135.86476   21.72953 103.8125
## [14,]   117.50 18559.211 106.63524 128.36476   21.72953 103.8125
## [15,]   143.75 20518.092 132.88524 154.61476   21.72953 103.8125
## [16,]   120.00 18197.368 109.13524 130.86476   21.72953 103.8125
## [17,]   128.75 17978.618 117.88524 139.61476   21.72953 103.8125
## [18,]    77.50  4467.105  66.63524  88.36476   21.72953 103.8125
## [19,]    85.00  9236.842  74.13524  95.86476   21.72953 103.8125
## [20,]    62.50  2796.053  51.63524  73.36476   21.72953 103.8125

PIAR

y=bd$budget
n=20
pk=inclusionprobabilities(y,n)/n
sum(pk)
## [1] 1
v=c(0,cumsum(pk))
ech=matrix(0,nrow=20,ncol=20)
IC=matrix(0,nrow=20,ncol=2)
y.bar.piar=NULL
var.piar=NULL


##tirage
##Tirage de 20 échantillons
for (i in 1:20){
  s=NULL
  for(j in 1:20){
    u=runif(1,0,1)
    for(k in 2:101){
      if((v[k-1]<=u)&(v[k]>u)) {
        s=c(s,k-1)
      } }}
  ech[,i]=y[s]
  y.bar.piar[i]=mean(ech[,i])
  var.piar[i]=var(ech[,i])
}
moy_y.bar.piar=mean(y.bar.piar)
##Intervalles de confiance
for(i in 1:20)
{IC[i,]=c(y.bar.piar[i]-1.96*sqrt(var(y.bar.piar)/20),y.bar.piar[i]+1.96*sqrt(var(y.bar.piar)/20))
}
longueur=IC[,2]-IC[,1]
moy_y.bar.piar=mean(y.bar.piar)
##Représentation des IC
plot(c(1:20),IC[,1],ylim=c(min(min(IC[,2]),min(IC[,1])),max(max(IC[,2]),max(IC[,1]))),type="o",xaxt =
       "n",xlab="les échantillons",ylab="Intervalle de confiance",col="blue")
par(new=TRUE)
plot(c(1:20),IC[,2],ylim=c(min(min(IC[,2]),min(IC[,1])),max(max(IC[,2]),max(IC[,1]))),type="o",xaxt =
       "n",xlab="les échantillons",ylab="Intervalle de confiance",cex=1.5,font=3,col="red")
axis(1,at=c(1:20))

piar=cbind(y.bar.piar,var.piar,IC[,2],IC[,1] , longueur)
colnames(piar)<-c("y.bar.piar" , "var.piar" , "icPIARmax" , "icPIARmin" , "longueur_PIAR")
piar
##       y.bar.piar var.piar icPIARmax icPIARmin longueur_PIAR
##  [1,]     230.00 19513.16  245.1726  214.8274      30.34525
##  [2,]     176.25 17597.04  191.4226  161.0774      30.34525
##  [3,]     276.25 21939.14  291.4226  261.0774      30.34525
##  [4,]     281.25 16570.72  296.4226  266.0774      30.34525
##  [5,]     231.25 23149.67  246.4226  216.0774      30.34525
##  [6,]     212.50 23519.74  227.6726  197.3274      30.34525
##  [7,]     223.75 17728.62  238.9226  208.5774      30.34525
##  [8,]     246.25 19491.78  261.4226  231.0774      30.34525
##  [9,]     198.75 18649.67  213.9226  183.5774      30.34525
## [10,]     251.25 25623.36  266.4226  236.0774      30.34525
## [11,]     212.50 23519.74  227.6726  197.3274      30.34525
## [12,]     276.25 21939.14  291.4226  261.0774      30.34525
## [13,]     266.25 21333.88  281.4226  251.0774      30.34525
## [14,]     210.00 16144.74  225.1726  194.8274      30.34525
## [15,]     331.25 12952.30  346.4226  316.0774      30.34525
## [16,]     226.25 25031.25  241.4226  211.0774      30.34525
## [17,]     237.50 21875.00  252.6726  222.3274      30.34525
## [18,]     222.50 25256.58  237.6726  207.3274      30.34525
## [19,]     251.25 28583.88  266.4226  236.0774      30.34525
## [20,]     236.25 18254.93  251.4226  221.0774      30.34525