head (dat)
##       id            cult ctrl_dis dis_pres     r pairs       z     v_z
## 1 2012_1         TMG 803     42.5        h -0.18    36 -0.1820 0.03030
## 2 2012_2         TMG 803     36.3        h -0.53    36 -0.5901 0.03030
## 3 2012_3         TMG 803     41.3        h -0.35    36 -0.3654 0.03030
## 4 2012_4           5G830     30.6        h -0.19    36 -0.1923 0.03030
## 5 2012_5 BMX Potencia RR     27.0        l -0.19    36 -0.1923 0.03030
## 6 2012_6         TMG 803     44.8        h -0.49    45 -0.5361 0.02381

Fitted models

Random effect model

(fit1  = rma.uni(z, v_z, method="ML",data= dat,slab=id))
## 
## Random-Effects Model (k = 27; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0487 (SE = 0.0210)
## tau (square root of estimated tau^2 value):      0.2206
## I^2 (total heterogeneity / total variability):   63.16%
## H^2 (total variability / sampling variability):  2.71
## 
## Test for Heterogeneity: 
## Q(df = 26) = 73.7723, p-val < .0001
## 
## Model Results:
## 
## estimate       se     zval     pval    ci.lb    ci.ub          
##  -0.5735   0.0535 -10.7238   <.0001  -0.6783  -0.4687      *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(r.low= rma.uni(z, v_z, method="ML",data= dat, subset=(dis_pres=="l")))
## 
## Random-Effects Model (k = 14; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0232 (SE = 0.0198)
## tau (square root of estimated tau^2 value):      0.1523
## I^2 (total heterogeneity / total variability):   44.39%
## H^2 (total variability / sampling variability):  1.80
## 
## Test for Heterogeneity: 
## Q(df = 13) = 25.1080, p-val = 0.0223
## 
## Model Results:
## 
## estimate       se     zval     pval    ci.lb    ci.ub          
##  -0.5926   0.0612  -9.6880   <.0001  -0.7125  -0.4727      *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(r.high= rma.uni(z, v_z, method="ML",data= dat, subset=(dis_pres=="h")))
## 
## Random-Effects Model (k = 13; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0748 (SE = 0.0403)
## tau (square root of estimated tau^2 value):      0.2735
## I^2 (total heterogeneity / total variability):   72.98%
## H^2 (total variability / sampling variability):  3.70
## 
## Test for Heterogeneity: 
## Q(df = 12) = 48.4383, p-val < .0001
## 
## Model Results:
## 
## estimate       se     zval     pval    ci.lb    ci.ub          
##  -0.5517   0.0889  -6.2074   <.0001  -0.7258  -0.3775      *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

plot of chunk unnamed-chunk-4

Model including Cultivar as qualitative moderator

(fit.cult  = rma.uni(z, v_z, method="ML", mods = ~ cult-1, data= dat))
## 
## Mixed-Effects Model (k = 27; tau^2 estimator: ML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0000 (SE = 0.0077)
## tau (square root of estimated tau^2 value):             0.0013
## I^2 (residual heterogeneity / unaccounted variability): 0.01%
## H^2 (unaccounted variability / sampling variability):   1.00
## 
## Test for Residual Heterogeneity: 
## QE(df = 9) = 20.4837, p-val = 0.0152
## 
## Test of Moderators (coefficient(s) 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18): 
## QM(df = 18) = 369.0216, p-val < .0001
## 
## Model Results:
## 
##                                   se     zval    pval    ci.lb    ci.ub
## cult5G830            -0.1923  0.1741  -1.1049  0.2692  -0.5335   0.1489
## cultAtiva RR         -0.7414  0.1741  -4.2590  <.0001  -1.0826  -0.4002
## cultBMX Potencia RR  -0.5451  0.1163  -4.6894  <.0001  -0.7730  -0.3173
## cultBRSGO 8151 RR    -0.6742  0.1231  -5.4768  <.0001  -0.9154  -0.4329
## cultBRSGO 8661 RR    -0.5101  0.1741  -2.9301  0.0034  -0.8513  -0.1689
## cultBRSGO 9160 RR    -0.7454  0.0933  -7.9935  <.0001  -0.9282  -0.5626
## cultDow 5G830 RR     -1.0203  0.1562  -6.5331  <.0001  -1.3264  -0.7142
## cultM 9144 RR        -0.8480  0.1741  -4.8710  <.0001  -1.1892  -0.5068
## cultMsoy 8336        -0.3095  0.1741  -1.7780  0.0754  -0.6507   0.0317
## cultMSoy 9144 RR     -1.0714  0.1741  -6.1547  <.0001  -1.4126  -0.7302
## cultNA 5909 RR       -0.6184  0.1857  -3.3300  0.0009  -0.9823  -0.2544
## cultP98Y30           -0.5230  0.1741  -3.0042  0.0027  -0.8642  -0.1818
## cultST 810           -0.6475  0.1741  -3.7196  0.0002  -0.9887  -0.3063
## cultSyn 1180         -0.8872  0.1562  -5.6806  <.0001  -1.1933  -0.5811
## cultTMG 1179 RR      -0.2260  0.1163  -1.9439  0.0519  -0.4538   0.0019
## cultTMG 132 RR       -0.7089  0.1741  -4.0723  <.0001  -1.0501  -0.3677
## cultTMG 7188 RR      -0.3205  0.1562  -2.0524  0.0401  -0.6267  -0.0144
## cultTMG 803          -0.3936  0.0758  -5.1915  <.0001  -0.5422  -0.2450
##                         
## cult5G830               
## cultAtiva RR         ***
## cultBMX Potencia RR  ***
## cultBRSGO 8151 RR    ***
## cultBRSGO 8661 RR     **
## cultBRSGO 9160 RR    ***
## cultDow 5G830 RR     ***
## cultM 9144 RR        ***
## cultMsoy 8336          .
## cultMSoy 9144 RR     ***
## cultNA 5909 RR       ***
## cultP98Y30            **
## cultST 810           ***
## cultSyn 1180         ***
## cultTMG 1179 RR        .
## cultTMG 132 RR       ***
## cultTMG 7188 RR        *
## cultTMG 803          ***
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
cult_eff = round(fisherz2r(fit.cult$b),2) # cultivar r ยป Represents disease "sensibility"?
rownames(cult_eff)=gsub('cult','',rownames(cult_eff))
cult_effect=as.data.frame(cult_eff)
cult_effect$cultivar=row.names(cult_eff)
cult_effect=cult_effect[,c(2,1)]
row.names(cult_effect)<-NULL; names(cult_effect)[2]="r" 
n.cult=table(dat$cult)
n <- c()
for(i in 1:18) {n <- c(n,n.cult[[i]])}
cultivar= names(n.cult)
n.cultivar=data.frame(cultivar,n)
cultivar_effect=merge(cult_effect, n.cultivar, by="cultivar")
cultivar_effect[with(cultivar_effect, order(-r)), ]
##           cultivar     r n
## 1            5G830 -0.19 1
## 15     TMG 1179 RR -0.22 2
## 9        Msoy 8336 -0.30 1
## 17     TMG 7188 RR -0.31 1
## 18         TMG 803 -0.37 5
## 5    BRSGO 8661 RR -0.47 1
## 12          P98Y30 -0.48 1
## 3  BMX Potencia RR -0.50 2
## 11      NA 5909 RR -0.55 1
## 13          ST 810 -0.57 1
## 4    BRSGO 8151 RR -0.59 2
## 16      TMG 132 RR -0.61 1
## 2         Ativa RR -0.63 1
## 6    BRSGO 9160 RR -0.63 3
## 8        M 9144 RR -0.69 1
## 14        Syn 1180 -0.71 1
## 7     Dow 5G830 RR -0.77 1
## 10    MSoy 9144 RR -0.79 1