Problem 1

EMAIL: Wu Fuheng(a0095704@nus.edu.sg)

This is a AR(1)/ARCH(1) model, the conditional mean and variance of \(u_t\) will be non-constant.

Since \(\mu=0.4, \phi=0.45, \omega=1\) and \(\alpha_1=0.3\), we can rewrite the equation of \(u_t\) as follows:

\[\begin{align*} u_t &=(1-\phi)\mu + \phi u_{t-1} + h_t\\ &=(1-0.45)0.4+0.45 u_{t-1}+h_t\\ &=0.22+0.45 u_{t-1}+h_t\\ \end{align*}\]


a)Conditional Expectation

The conditional mean of \(u_t\) is

\[\begin{align*} E[u_t|u_{t-1},...] &= 0.22+0.45u_{t-1}+E[h_t|h_{t-1}...]\\ \end{align*}\]

According to P479 of SDAFE, for a ARCH(1) process \(h_t\), the conditional mean \(E[h_t|h_{t-1}...]\)=0. Thus we have

\[\begin{align*} E[u_t|u_{t-1},...] &= 0.22+0.45u_{t-1}\\ \end{align*}\]

So,

\[\begin{align*} E[u_2|u_1=1,u_0=0.2] &= 0.22+0.45u_1\\ &=0.67 \end{align*}\]

b)Conditional Variance

The conditional variance of \(u_t\) is \[\begin{align*} Var[u_t|u_{t-1},...] &= E[(u_t-E[u_t|u_{t-1},...])^2|u_{t-1},...]\\ &= E[(h_t)^2|u_{t-1},...]\\ &= \omega + \alpha_1 h_{t-1}^2\\ \end{align*}\]

Thus, we have \[\begin{align*} Var[u_2|u_1=1,u_0=0.2] &= \omega + \alpha_1 h_{1}^2\\ &= 1 + 0.3 h_{1}^2\\ \end{align*}\]

And we also know \[\begin{align*} u_1-\mu=\phi (u_0 - \mu) + h_1\\ \longrightarrow 1-0.4=0.45(0.2-0.4)+ h_1\\ \longrightarrow h_1=0.6+0.45 \times 0.2=0.69 \end{align*}\]

Therefore, \(Var[u_2|u_1=1,u_0=0.2]=1+0.3 \times 0.69^2=1.14283\)


Problem 2

Assume \(\beta_0=0.06, \beta_1=0.35, \delta=0.22\), we can rewrite the model

\[\begin{align*} Y_t=0.06+0.35X_t+0.22\sigma_t+h_t \end{align*}\]


a)Conditional Expectation

\[\begin{align*} E[Y_t|X_t=0.1,h_{t-1}=0.6] &=0.06+0.35*0.1+0.22\sigma_t\\ &=0.095+0.22\sigma_t\\ \end{align*}\]

b)Conditional Variance

\[\begin{align*} Var[Y_t|X_t=0.1,h_{t-1}=0.6] &=E[(Y_t-E[Y_t|X_t=0.1,h_{t-1}=0.6])^2|X_t=0.1,h_{t-1}=0.6]\\ &=E[h_t^2|X_t=0.1,h_{t-1}=0.6]\\ &=1+0.5h_{t-1}^2\\ &=1+0.5*0.6^2\\ &=1.18 \end{align*}\]

c)Is the conditional distribution of \(Y_t\) given \(X_t\) and \(h_{t-1}\) normal? Why or why not?

Yes, it is normal. Reason: There is only one stochastic item \(\varepsilon\) in the formula which is normal. And we know the linear combination of a normal distribution is normal.

d)Is the marginal distribution of \(Y_t\) normal? Why or why not?

No, it isn’t. Reason: In this case, \(h_t\) is a ARCH(1) process, which is of a non-Gaussian distribution with a heavy tail. So \(Y_t\) is also not Gaussian/normal.


Problem 3

This problem uses monthly observations of the two-month yield, that is, \(Y_T\) with T equal to two months, in the data set Irates in the Ecdat package. The rates are log-transformed to stabilize the variance. To fit a GARCH model to the changes in the log rates, run the following R code.

library(fGarch)
library(Ecdat)
data(Irates)
r = as.numeric(log(Irates[,2]))
n = length(r)
lagr = r[1:(n-1)]
diffr = r[2:n] - lagr
g=garchFit(~arma(1,0)+garch(1,1),data=diffr, cond.dist = "std")

a) What model is being fit to the changes in \(r\)? Describe the model in detail.

The model is a AR(1)/GARCH(1,1) model, assuming a t-distributed errors. We are trying to use AR(1) to model the return conditional mean and GARCH(1,1) to model its conditional variance. We can write is mathematically as follows:

\[\begin{align*} \Delta r_t=Y_t=\mu+ar_1 Y_{t-1}+a_t\\ \\ a_t=\varepsilon_t \sqrt{\omega + \alpha_1 a_{t-1}^2+ \beta_1 \sigma_{t-1}^2}, \varepsilon_t \thicksim t(.) \end{align*}\]

In this case, the fitted model is: \[\begin{align} \Delta r_t=Y_t=0.00910873+0.09508060 Y_{t-1}+a_t\\ \\ a_t=\varepsilon_t \sqrt{0.00054864 + 0.32444019 a_{t-1}^2+ 0.74026870 \sigma_{t-1}^2}\\ \\ \varepsilon_t \thicksim t(2.83060758) \end{align}\]

The details of the fitted model are as follows:

summary(g)
## 
## Title:
##  GARCH Modelling 
## 
## Call:
##  garchFit(formula = ~arma(1, 0) + garch(1, 1), data = diffr, cond.dist = "std") 
## 
## Mean and Variance Equation:
##  data ~ arma(1, 0) + garch(1, 1)
## <environment: 0x000000000b8aa668>
##  [data = diffr]
## 
## Conditional Distribution:
##  std 
## 
## Coefficient(s):
##         mu         ar1       omega      alpha1       beta1       shape  
## 0.00910873  0.09508060  0.00054864  0.32444019  0.74026870  2.83060758  
## 
## Std. Errors:
##  based on Hessian 
## 
## Error Analysis:
##         Estimate  Std. Error  t value Pr(>|t|)    
## mu     0.0091087   0.0023895    3.812 0.000138 ***
## ar1    0.0950806   0.0432758    2.197 0.028014 *  
## omega  0.0005486   0.0002968    1.848 0.064564 .  
## alpha1 0.3244402   0.1368876    2.370 0.017782 *  
## beta1  0.7402687   0.0656629   11.274  < 2e-16 ***
## shape  2.8306076   0.4243716    6.670 2.56e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Log Likelihood:
##  630.9    normalized:  1.19 
## 
## Description:
##  Sat Oct 11 00:48:12 2014 by user: wufuh_000 
## 
## 
## Standardised Residuals Tests:
##                                 Statistic p-Value
##  Jarque-Bera Test   R    Chi^2  1048      0      
##  Shapiro-Wilk Test  R    W      0.9114    0      
##  Ljung-Box Test     R    Q(10)  7.962     0.6326 
##  Ljung-Box Test     R    Q(15)  11.93     0.6846 
##  Ljung-Box Test     R    Q(20)  12.76     0.8874 
##  Ljung-Box Test     R^2  Q(10)  13.12     0.2173 
##  Ljung-Box Test     R^2  Q(15)  14.7      0.4736 
##  Ljung-Box Test     R^2  Q(20)  17.79     0.6014 
##  LM Arch Test       R    TR^2   14.28     0.2829 
## 
## Information Criterion Statistics:
##    AIC    BIC    SIC   HQIC 
## -2.358 -2.310 -2.358 -2.339

b) What are the estimates of the parameters of the model?

The estimates of the model parameters are as follows

Coefficient(s):
         mu         ar1       omega      alpha1       beta1       shape  
 0.00910873  0.09508060  0.00054864  0.32444019  0.74026870  2.83060758  

c) What is the estimated ACF of \(\Delta r_t\) ?

acf(diffr)

plot of chunk unnamed-chunk-3

d) What is the estimated ACF of \(a_t\) ?

\(a_t\) is uncorrelated, aka \(ACF(a_t)=\rho_a(h)=0\) if \(h\neq 0\).

acf(residuals(g))

plot of chunk unnamed-chunk-4

e) What is the estimated ACF of \({a_t}^2\) ?

acf(residuals(g)^2)

plot of chunk unnamed-chunk-5