Sameer Mathur
library(multcomp)
attach(cholesterol)
head(cholesterol)
trt response
1 1time 3.8612
2 1time 10.3868
3 1time 5.9059
4 1time 3.0609
5 1time 7.7204
6 1time 2.7139
str(cholesterol)
'data.frame': 50 obs. of 2 variables:
$ trt : Factor w/ 5 levels "1time","2times",..: 1 1 1 1 1 1 1 1 1 1 ...
$ response: num 3.86 10.39 5.91 3.06 7.72 ...
library(psych)
describe(cholesterol)[,c(2,3,4,5,8,9)]
n mean sd median min max
trt* 50 3.00 1.43 3.00 1.0 5.00
response 50 12.74 6.09 12.61 2.3 27.24
# group sample size
table(trt)
trt
1time 2times 4times drugD drugE
10 10 10 10 10
# group means
meanRes <- aggregate(response, by=list(trt), FUN=mean)
colnames(meanRes) <- c("Response","Mean")
meanRes
Response Mean
1 1time 5.78197
2 2times 9.22497
3 4times 12.37478
4 drugD 15.36117
5 drugE 20.94752
# group standard deviation
sdRes <- aggregate(response, by=list(trt), FUN=sd)
colnames(sdRes) <- c("Response","SD")
sdRes
Response SD
1 1time 2.878113
2 2times 3.483054
3 4times 2.923119
4 drugD 3.454636
5 drugE 3.345003
boxplot(response ~ trt, data=cholesterol, main="Response versus Treatment",
xlab="Treatment", ylab="Response")
Test for group diffrences
fit <- aov(response ~ trt)
summary(fit)
Df Sum Sq Mean Sq F value Pr(>F)
trt 4 1351.4 337.8 32.43 9.82e-13 ***
Residuals 45 468.8 10.4
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library(gplots)
plotmeans(response ~ trt, xlab="Treatment", ylab="Response",
main="Mean Plot\nwith 95% CI")
TukeyHSD(fit)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = response ~ trt)
$trt
diff lwr upr p adj
2times-1time 3.44300 -0.6582817 7.544282 0.1380949
4times-1time 6.59281 2.4915283 10.694092 0.0003542
drugD-1time 9.57920 5.4779183 13.680482 0.0000003
drugE-1time 15.16555 11.0642683 19.266832 0.0000000
4times-2times 3.14981 -0.9514717 7.251092 0.2050382
drugD-2times 6.13620 2.0349183 10.237482 0.0009611
drugE-2times 11.72255 7.6212683 15.823832 0.0000000
drugD-4times 2.98639 -1.1148917 7.087672 0.2512446
drugE-4times 8.57274 4.4714583 12.674022 0.0000037
drugE-drugD 5.58635 1.4850683 9.687632 0.0030633
plot(TukeyHSD(fit))
library(multcomp)
tuk <- glht(fit, linfct=mcp(trt="Tukey"))
plot(cld(tuk, level=.05),col="lightgrey")
library(car)
qqPlot(lm(response ~ trt, data=cholesterol),
simulate=TRUE, main="Q-Q Plot", labels=FALSE)
bartlett.test(response ~ trt, data=cholesterol)
Bartlett test of homogeneity of variances
data: response by trt
Bartlett's K-squared = 0.57975, df = 4, p-value = 0.9653
library(car)
outlierTest(fit)
No Studentized residuals with Bonferonni p < 0.05
Largest |rstudent|:
rstudent unadjusted p-value Bonferonni p
19 2.251149 0.029422 NA