AcP = Academic performance

Indexes

ProjectID = read.csv("ProjectIDs.csv")
ProjectID
##     X ProjectID   Course Year Semester  AssName LxRx LxSxRx
## 1   1        45 BIOL1040 2013        2 Report 3 L1R3 L1S2R3
## 2   2        44 BIOL1040 2013        2 Report 2 L1R2 L1S2R2
## 3   3        43 BIOL1040 2013        2 Report 1 L1R1 L1S2R1
## 4   4        40 BIOL1040 2013        1 Report 4 L1R4 L1S1R4
## 5   5        39 BIOL1040 2013        1 Report 3 L1R3 L1S1R3
## 6   6        32 BIOL1040 2013        1 Report 2 L1R2 L1S1R2
## 7   7        31 BIOL1040 2013        1 Report 1 L1R1 L1S1R1
## 8   8        34 BIOM2011 2013        1 Report 1 L2R1 L2S1R1
## 9   9        41 BIOM2011 2013        1 Report 2 L2R2 L2S1R2
## 10 10        48 BIOM2011 2013        2 Report 1 L2R1 L2S2R1
## 11 11        50 BIOM2011 2013        2 Report 2 L2R2 L2S2R2
## 12 12        28 BIOM2013 2013        1     Oral L2R1 L2S1R1
## 13 13        42 BIOM2013 2013        1   Report L2R2 L2S1R2
## 14 14        63 BIOM2013 2014        1     Oral L2R1 L2S1R1

LxRx = Level and Report eg Level 1 (BIOL1040 = first year) Report 1 (1st Report) Sx = semester

Setting up sequences

source("ProjectNames.R")
project.names()

rm(biol, biol.names, names.all)
str(biom)
##  int [1:7] 34 41 48 50 28 42 63
biom.reports = biom[c(1:4,6)]
biom.reports.names = biom.names[c(1:4,6)]

Academic Performance

Ac.performance = function(projects, project.names)
     {      
      file.names <- lapply(projects, function(x){paste0("AcP", x, "DeID.csv")})
      AcP.biom <- lapply(file.names, read.csv, header=TRUE, stringsAsFactors=FALSE)
      names(AcP.biom) <- project.names
      AcP.biom <<- AcP.biom
     }

Ac.performance(biom.reports, biom.reports.names)

aligning marks

list2env(AcP.biom, environment())
## <environment: R_GlobalEnv>
biom2011S1 = merge(BIOM2011Sem1Report1, BIOM2011Sem1Report2[2:20], by="StudentID", all.x=T)
biom2011S2 = merge(BIOM2011Sem2Report1, BIOM2011Sem2Report2[2:20], by="StudentID", all.x=T)
biom2011 = rbind(biom2011S1, biom2011S2)
biom2011[,2] = NULL

remove = rev(which(is.na(biom2011$Intro.y)))
if (length(remove) > 0)
  {
  biom2011 = biom2011[-remove,]
  }

which(is.na(biom2011$Disc.InterpFindings.y))
## integer(0)
which(is.na(biom2011$Disc.IntegrateLit.y))
## integer(0)
remove = rev(which(is.na(biom2011$Intro.x)))
if (length(remove) > 0)
  {
  biom2011 = biom2011[-remove,]
  }

remove = rev(which(is.na(biom2011$Disc.InterpFindings.x)))
if (length(remove) > 0)
  {
  biom2011 = biom2011[-remove,]
  }

which(is.na(biom2011$Disc.IntegrateLit.x))
## integer(0)
dim(biom2011)
## [1] 320  37
names(biom2011)
##  [1] "StudentID"             "SubmissionID.x"       
##  [3] "MarkerID.x"            "Publish.Time.x"       
##  [5] "Intro.x"               "Hypoth.x"             
##  [7] "Methods.x"             "Results.text.x"       
##  [9] "Fig.Tables.x"          "Legend.Title.x"       
## [11] "Disc.InterpFindings.x" "Disc.IntegrateLit.x"  
## [13] "Refs.x"                "Kn.PhysMechs.x"       
## [15] "Kn.ExpApproach.x"      "W.Structure.x"        
## [17] "W.LanguageJargon.x"    "W.GrammarSpelling.x"  
## [19] "Final.Grade.x"         "SubmissionID.y"       
## [21] "MarkerID.y"            "Publish.Time.y"       
## [23] "Intro.y"               "Hypoth.y"             
## [25] "Methods.y"             "Results.text.y"       
## [27] "Fig.Tables.y"          "Legend.Title.y"       
## [29] "Disc.InterpFindings.y" "Disc.IntegrateLit.y"  
## [31] "Refs.y"                "Kn.PhysMechs.y"       
## [33] "Kn.ExpApproach.y"      "W.Structure.y"        
## [35] "W.LanguageJargon.y"    "W.GrammarSpelling.y"  
## [37] "Final.Grade.y"

average marks

df = biom2011
str(df)
## 'data.frame':    320 obs. of  37 variables:
##  $ StudentID            : chr  "S8112187" "S8242993" "S8282157" "S8285971" ...
##  $ SubmissionID.x       : int  3393 3253 3326 3301 3198 3264 3216 3285 3388 3231 ...
##  $ MarkerID.x           : chr  "T28" "T25" "T26" "T19" ...
##  $ Publish.Time.x       : chr  "29/04/13 14:29" "29/04/13 14:26" "29/04/13 14:31" "29/04/13 14:26" ...
##  $ Intro.x              : int  65 100 50 50 80 35 65 80 50 100 ...
##  $ Hypoth.x             : int  100 100 80 80 100 65 100 65 100 100 ...
##  $ Methods.x            : int  80 100 80 80 65 80 100 65 65 80 ...
##  $ Results.text.x       : int  65 50 65 80 20 80 80 100 65 80 ...
##  $ Fig.Tables.x         : int  100 20 100 65 80 100 100 80 80 100 ...
##  $ Legend.Title.x       : int  100 35 80 80 65 100 100 100 100 100 ...
##  $ Disc.InterpFindings.x: int  100 65 35 50 20 35 65 50 65 50 ...
##  $ Disc.IntegrateLit.x  : int  80 50 0 35 35 50 65 50 65 65 ...
##  $ Refs.x               : int  80 80 20 50 100 80 65 80 65 100 ...
##  $ Kn.PhysMechs.x       : int  100 80 20 50 65 50 65 65 50 50 ...
##  $ Kn.ExpApproach.x     : int  80 65 35 50 35 50 65 80 65 65 ...
##  $ W.Structure.x        : int  80 80 50 50 80 65 50 80 65 20 ...
##  $ W.LanguageJargon.x   : int  80 50 50 50 65 65 80 65 50 65 ...
##  $ W.GrammarSpelling.x  : chr  "100" "65" "50" "65" ...
##  $ Final.Grade.x        : num  86.8 70.8 46 57.5 58.8 ...
##  $ SubmissionID.y       : int  5036 4865 4970 4907 4996 4859 4854 4889 4981 4848 ...
##  $ MarkerID.y           : chr  "T19" "T25" "T32" "T19" ...
##  $ Publish.Time.y       : chr  "4/06/13 13:47" "4/06/13 13:44" "4/06/13 13:47" "4/06/13 13:44" ...
##  $ Intro.y              : int  50 80 80 50 35 50 65 0 80 100 ...
##  $ Hypoth.y             : int  80 50 100 80 100 100 80 80 100 50 ...
##  $ Methods.y            : int  80 100 80 65 100 50 100 100 80 100 ...
##  $ Results.text.y       : int  65 80 80 50 80 100 80 100 80 100 ...
##  $ Fig.Tables.y         : int  80 50 100 80 100 100 100 80 100 65 ...
##  $ Legend.Title.y       : int  100 65 80 50 80 80 80 80 100 80 ...
##  $ Disc.InterpFindings.y: int  50 100 50 50 50 65 100 0 80 80 ...
##  $ Disc.IntegrateLit.y  : int  35 80 65 35 20 80 80 0 80 80 ...
##  $ Refs.y               : int  80 80 65 80 65 80 80 0 80 100 ...
##  $ Kn.PhysMechs.y       : int  50 80 65 35 35 80 80 0 65 80 ...
##  $ Kn.ExpApproach.y     : int  50 80 65 35 50 80 80 35 80 100 ...
##  $ W.Structure.y        : int  65 100 100 50 80 80 65 50 65 65 ...
##  $ W.LanguageJargon.y   : int  65 100 100 65 50 80 80 80 80 80 ...
##  $ W.GrammarSpelling.y  : int  65 80 80 65 35 80 100 65 80 100 ...
##  $ Final.Grade.y        : num  61.5 82.2 75.8 53 57.8 ...
m = df[,c(5,11,12)]
df$R1arg = round(apply(m, 1, mean), digits=2)
df[1:10,c(5, 11:12, 38)]
##    Intro.x Disc.InterpFindings.x Disc.IntegrateLit.x R1arg
## 1       65                   100                  80 81.67
## 2      100                    65                  50 71.67
## 3       50                    35                   0 28.33
## 4       50                    50                  35 45.00
## 5       80                    20                  35 45.00
## 6       35                    35                  50 40.00
## 7       65                    65                  65 65.00
## 8       80                    50                  50 60.00
## 9       50                    65                  65 60.00
## 10     100                    50                  65 71.67
m = df[,c(23,29,30)]
df$R2arg = round(apply(m, 1, mean), digits=2)
df[1:10,c(23,29,30,39)]
##    Intro.y Disc.InterpFindings.y Disc.IntegrateLit.y R2arg
## 1       50                    50                  35 45.00
## 2       80                   100                  80 86.67
## 3       80                    50                  65 65.00
## 4       50                    50                  35 45.00
## 5       35                    50                  20 35.00
## 6       50                    65                  80 65.00
## 7       65                   100                  80 81.67
## 8        0                     0                   0  0.00
## 9       80                    80                  80 80.00
## 10     100                    80                  80 86.67
biom2011 = df

load FbU

Fb.use = function(...)
     {
      file.names <- lapply(biom, function(x){paste0("FbU", x, "DeID.csv")})
      FbU.biom <- lapply(file.names, read.csv, header=TRUE, stringsAsFactors=FALSE)
      names(FbU.biom) <- biom.names
      FbU.biom <<- FbU.biom
   }
Fb.use()
  
list2env(FbU.biom, environment())
## <environment: R_GlobalEnv>
FbU = rbind(BIOM2011Sem1Report1, BIOM2011Sem2Report1, BIOM2013Sem1Report)

df = FbU

df.studs = round(tapply(df$msec.B4.scroll, df$StudentID, sum, na.rm=T)/60000)
head(df.studs)
## S8112187 S8112239 S8239027 S8241553 S8242993 S8282157 
##      192       12       31        5       18        8
df.studs = as.data.frame(df.studs)
df.studs$StudentID = rownames(df.studs)
rownames(df.studs) = 1:nrow(df.studs)
names(df.studs) = c("Open.min", "StudentID")

FbU.sum = df.studs

df.studs = tapply(df$Duration, df$StudentID, sum, na.rm=T)
df.studs = as.data.frame(df.studs)
df.studs$StudentID = rownames(df.studs)
rownames(df.studs) = 1:nrow(df.studs)
names(df.studs) = c("Audio.min", "StudentID")

FbU.sum = merge(FbU.sum, df.studs, by="StudentID", all.x=T)
head(FbU.sum)
##   StudentID Open.min Audio.min
## 1  S8112187      192     181.1
## 2  S8112239       12     275.4
## 3  S8239027       31     170.0
## 4  S8241553        5     114.7
## 5  S8242993       18       0.0
## 6  S8282157        8       0.0

merge into biom2011

df = biom2011
df = merge(df, FbU.sum, by="StudentID", all.x=T)
biom2011 = df

used already - list

used = c("S8515233", "S8581667", "S8578821", "S8580595", "S8588339", "S8586153", "S8534409", "S8624445", "S8575723", "S8581099", "S8600971")

used
##  [1] "S8515233" "S8581667" "S8578821" "S8580595" "S8588339" "S8586153"
##  [7] "S8534409" "S8624445" "S8575723" "S8581099" "S8600971"

used already - into data

df = biom2011
used[1]
## [1] "S8515233"
which(df[,1] == used[1])
## [1] 53
Used = NULL
for (i in 1:length(used))
  {
  Used[i] = which(df[,1] == used[i])
  }

df$used = NA
df[1:5,37:41]
##   Final.Grade.y R1arg R2arg Open.min Audio.min
## 1         61.50 81.67 45.00      192     181.1
## 2         77.25 35.00 65.00       12     275.4
## 3         83.00 60.00 70.00       31     170.0
## 4         68.25 60.00 60.00        5     114.7
## 5         82.25 71.67 86.67       18       0.0
for (i in 1:length(Used))
  {
  df$used[Used[i]] = "Used"
  }

df[1:10,c(1,37:41)]
##    StudentID Final.Grade.y R1arg R2arg Open.min Audio.min
## 1   S8112187         61.50 81.67 45.00      192    181.06
## 2   S8112239         77.25 35.00 65.00       12    275.36
## 3   S8239027         83.00 60.00 70.00       31    169.99
## 4   S8241553         68.25 60.00 60.00        5    114.66
## 5   S8242993         82.25 71.67 86.67       18      0.00
## 6   S8282157         75.75 28.33 65.00        8      0.00
## 7   S8285971         64.25 45.00 60.00        2     31.18
## 8   S8285971         53.00 45.00 45.00        2     31.18
## 9   S8288655         57.75 45.00 35.00       71      0.00
## 10  S8288857         75.50 40.00 65.00       NA        NA
stud.used = subset(df, used == "Used")

stud.used[,c(1:3, 5, 23, 11, 29, 12, 30, 38:42)]
##     StudentID SubmissionID.x MarkerID.x Intro.x Intro.y
## 53   S8515233           3223        T25     100     100
## 93   S8534409           3300        T19      50      50
## 138  S8575723           8718        T09      80      80
## 167  S8578821           3274        T32      50      80
## 199  S8580595           3277        T30      50      80
## 202  S8581099           8742        T09      50      80
## 208  S8581667           3233        T25      80     100
## 250  S8586153           3299        T31      50     100
## 275  S8588339           3283        T31      80      80
## 295  S8600971           8746        T35      50      50
## 306  S8624445           8715        T35      35      50
##     Disc.InterpFindings.x Disc.InterpFindings.y Disc.IntegrateLit.x
## 53                     80                   100                  80
## 93                     35                    35                  35
## 138                   100                    80                 100
## 167                    50                    80                  35
## 199                    50                    80                  35
## 202                    50                    80                  20
## 208                    65                   100                  80
## 250                    65                   100                  80
## 275                    80                    80                  80
## 295                    50                    50                  50
## 306                    50                    50                  50
##     Disc.IntegrateLit.y R1arg  R2arg Open.min Audio.min used
## 53                   80 86.67  93.33      381    318.58 Used
## 93                   35 40.00  40.00      386    351.18 Used
## 138                 100 93.33  86.67       10    203.33 Used
## 167                 100 45.00  86.67       54    949.75 Used
## 199                 100 45.00  86.67       75     17.97 Used
## 202                  80 40.00  80.00      617    895.75 Used
## 208                 100 75.00 100.00       NA        NA Used
## 250                  65 65.00  88.33     1021    481.72 Used
## 275                 100 80.00  86.67      885    220.45 Used
## 295                  50 50.00  50.00      958    459.76 Used
## 306                  50 45.00  50.00       NA        NA Used
stud.used[,c(5, 23, 11, 29, 12, 30, 38:42)]
##     Intro.x Intro.y Disc.InterpFindings.x Disc.InterpFindings.y
## 53      100     100                    80                   100
## 93       50      50                    35                    35
## 138      80      80                   100                    80
## 167      50      80                    50                    80
## 199      50      80                    50                    80
## 202      50      80                    50                    80
## 208      80     100                    65                   100
## 250      50     100                    65                   100
## 275      80      80                    80                    80
## 295      50      50                    50                    50
## 306      35      50                    50                    50
##     Disc.IntegrateLit.x Disc.IntegrateLit.y R1arg  R2arg Open.min
## 53                   80                  80 86.67  93.33      381
## 93                   35                  35 40.00  40.00      386
## 138                 100                 100 93.33  86.67       10
## 167                  35                 100 45.00  86.67       54
## 199                  35                 100 45.00  86.67       75
## 202                  20                  80 40.00  80.00      617
## 208                  80                 100 75.00 100.00       NA
## 250                  80                  65 65.00  88.33     1021
## 275                  80                 100 80.00  86.67      885
## 295                  50                  50 50.00  50.00      958
## 306                  50                  50 45.00  50.00       NA
##     Audio.min used
## 53     318.58 Used
## 93     351.18 Used
## 138    203.33 Used
## 167    949.75 Used
## 199     17.97 Used
## 202    895.75 Used
## 208        NA Used
## 250    481.72 Used
## 275    220.45 Used
## 295    459.76 Used
## 306        NA Used
biom2011 = df

categorising used students - excellent to excellent

df = stud.used
ee.used = subset(df, Intro.x > 79 & Intro.y > 79 & Disc.InterpFindings.x > 79 & Disc.InterpFindings.y > 79 & Disc.IntegrateLit.x > 79 & Disc.IntegrateLit.y > 79)
ee2.used = ee.used[,c(1:3, 5, 23, 11, 29, 12, 30, 38:42)]

df2 = biom2011
ee = subset(df2, Intro.x > 79 & Intro.y > 79 & Disc.InterpFindings.x > 79 & Disc.InterpFindings.y > 79 & Disc.IntegrateLit.x > 79 & Disc.IntegrateLit.y > 79)
ee2 = ee[,c(1:3, 5, 23, 11, 29, 12, 30, 38:42)]
ee2
##     StudentID SubmissionID.x MarkerID.x Intro.x Intro.y
## 53   S8515233           3223        T25     100     100
## 138  S8575723           8718        T09      80      80
## 176  S8579423           3236        T28     100     100
## 275  S8588339           3283        T31      80      80
##     Disc.InterpFindings.x Disc.InterpFindings.y Disc.IntegrateLit.x
## 53                     80                   100                  80
## 138                   100                    80                 100
## 176                    80                   100                  80
## 275                    80                    80                  80
##     Disc.IntegrateLit.y R1arg  R2arg Open.min Audio.min used
## 53                   80 86.67  93.33      381     318.6 Used
## 138                 100 93.33  86.67       10     203.3 Used
## 176                 100 86.67 100.00       NA        NA <NA>
## 275                 100 80.00  86.67      885     220.5 Used
ee2.used
##     StudentID SubmissionID.x MarkerID.x Intro.x Intro.y
## 53   S8515233           3223        T25     100     100
## 138  S8575723           8718        T09      80      80
## 275  S8588339           3283        T31      80      80
##     Disc.InterpFindings.x Disc.InterpFindings.y Disc.IntegrateLit.x
## 53                     80                   100                  80
## 138                   100                    80                 100
## 275                    80                    80                  80
##     Disc.IntegrateLit.y R1arg R2arg Open.min Audio.min used
## 53                   80 86.67 93.33      381     318.6 Used
## 138                 100 93.33 86.67       10     203.3 Used
## 275                 100 80.00 86.67      885     220.5 Used
dim(ee2)
## [1]  4 14
dim(ee2.used)
## [1]  3 14

Turns out that S8579423 did not look at their feedback. So only 3 students fit the criteria of looking at their feedback and receiving 80-100% for all 3 criteria (Intro and 2x Disc) for both Reports 1 and 2

categorising used students - poor to poor

df = stud.used
pp.used = subset(df, Intro.x < 51 & Intro.y < 51 & Disc.InterpFindings.x < 51 & Disc.InterpFindings.y < 51 & Disc.IntegrateLit.x < 51 & Disc.IntegrateLit.y < 51)
pp2.used = pp.used[,c(1:3, 5, 23, 11, 29, 12, 30, 38:42)]

df2 = biom2011
pp = subset(df2, Intro.x < 51 & Intro.y < 51 & Disc.InterpFindings.x < 51 & Disc.InterpFindings.y < 51 & Disc.IntegrateLit.x < 51 & Disc.IntegrateLit.y < 51)
pp2 = pp[,c(1:3, 5, 23, 11, 29, 12, 30, 38:42)]
pp2
##     StudentID SubmissionID.x MarkerID.x Intro.x Intro.y
## 8    S8285971           3301        T19      50      50
## 19   S8401995           3356        T09      20      35
## 24   S8411017           3227        T25      35      50
## 25   S8419713           8728        T37      50      35
## 27   S8452823           8769        T30      50      50
## 28   S8456015           3339        T26      50      50
## 29   S8456363           3200        T09      20      35
## 30   S8458433           3359        T32      35      50
## 32   S8465383           3338        T26      20      50
## 36   S8468457           3390        T09      35      35
## 40   S8471835           8736        T36      35      50
## 41   S8472219           8726        T37      35      50
## 42   S8472709           8781        T29      20      20
## 43   S8473277           3288        T30      50      50
## 46   S8475961           3179        T29      50      35
## 71   S8527413           8753        T37      50      50
## 80   S8529621           3251        T30      35      35
## 84   S8530473           3220        T05      35      35
## 87   S8530961           3282        T19      50      50
## 88   S8531381           3298        T31      35      50
## 90   S8532163           3363        T33      35      50
## 93   S8534409           3300        T19      50      50
## 94   S8534971           3306        T32      35      50
## 96   S8535223           3402        T33      20       0
## 100  S8536879           3337        T30      50      35
## 102  S8538157           3332        T09      50      50
## 105  S8548067           3239        T31      20      50
## 107  S8549911           8714        T29      35      35
## 108  S8549911           3389        T33      20      35
## 115  S8563805           3206        T05      20      50
## 119  S8566849           3305        T19      35      35
## 121  S8566867           8749        T29      20      35
## 122  S8567033           3346        T33      35      50
## 124  S8568505           8689        T29      35      35
## 131  S8574613           3624        T19      50      50
## 136  S8575513           8731        T29      50      35
## 147  S8576411           8732        T37      50      50
## 154  S8577287           3336        T33      20      50
## 173  S8579223           3192        T29      50      50
## 177  S8579545           3361        T26      20      20
## 182  S8579733           3237        T31      35      50
## 183  S8579733           8737        T29      35      35
## 195  S8580303           3315        T32      35      50
## 216  S8582201           3202        T29      35      35
## 217  S8582337           8684        T35      50      50
## 233  S8583875           8700        T36      35      35
## 237  S8584681           3182        T29      35      50
## 249  S8586065           9152        T29      20      50
## 271  S8588015           3175        T29      35      50
## 280  S8589129           3878        T28      20      50
## 290  S8594143           3297        T31      20      50
## 295  S8600971           8746        T35      50      50
## 296  S8602821           3181        T29      35      35
## 298  S8605999           8710        T36      50      50
## 301  S8607681           3169        T08      35      35
## 302  S8607681           3169        T08      35      20
## 306  S8624445           8715        T35      35      50
## 315  S8651257           3335        T33      20      50
## 316  S8658567           8702        T29      35      50
## 320  S8668771           8745        T35      20      35
##     Disc.InterpFindings.x Disc.InterpFindings.y Disc.IntegrateLit.x
## 8                      50                    50                  35
## 19                      0                    20                  35
## 24                     35                    50                   0
## 25                     50                    35                  35
## 27                     35                    35                  50
## 28                     35                    20                  50
## 29                     20                    50                  20
## 30                     20                    35                  20
## 32                     20                    50                  35
## 36                     35                    50                  35
## 40                     50                     0                  35
## 41                     50                    50                  35
## 42                      0                     0                   0
## 43                      0                     0                  20
## 46                     50                    50                   0
## 71                     50                    50                  50
## 80                     35                    20                  35
## 84                     35                    50                  20
## 87                     50                    50                  35
## 88                     35                    50                  20
## 90                     50                    50                  35
## 93                     35                    35                  35
## 94                     20                    35                  35
## 96                     35                     0                  35
## 100                    50                    35                  35
## 102                     0                    50                  20
## 105                    20                    20                  20
## 107                    35                    35                   0
## 108                    35                    35                  20
## 115                    20                    20                  20
## 119                    35                    50                  35
## 121                    35                    35                  35
## 122                    35                    50                  35
## 124                    20                    50                  20
## 131                    50                    35                  20
## 136                    50                    50                  50
## 147                    35                    35                  35
## 154                    20                    50                  20
## 173                    50                    50                  35
## 177                    20                    35                   0
## 182                    20                    35                  35
## 183                    20                    35                  35
## 195                    35                    50                  20
## 216                    20                    50                  35
## 217                    50                    50                  50
## 233                    35                     0                  35
## 237                    35                    50                  20
## 249                    35                     0                  20
## 271                    35                    50                  20
## 280                    20                    35                  20
## 290                    35                    50                  50
## 295                    50                    50                  50
## 296                    35                    35                  20
## 298                    35                    35                  50
## 301                    50                    35                  50
## 302                    50                     0                  50
## 306                    50                    50                  50
## 315                    35                    50                  35
## 316                    50                    35                  35
## 320                    20                    50                  20
##     Disc.IntegrateLit.y R1arg R2arg Open.min Audio.min used
## 8                    35 45.00 45.00        2     31.18 <NA>
## 19                   35 18.33 30.00        3      0.00 <NA>
## 24                   50 23.33 50.00       NA        NA <NA>
## 25                   35 45.00 35.00       NA        NA <NA>
## 27                   35 45.00 40.00       12     31.14 <NA>
## 28                   35 45.00 35.00       NA        NA <NA>
## 29                   20 20.00 35.00       48   1870.88 <NA>
## 30                   35 25.00 40.00       NA        NA <NA>
## 32                   50 25.00 50.00       NA        NA <NA>
## 36                   35 35.00 40.00      165   4530.56 <NA>
## 40                    0 40.00 16.67        2      0.00 <NA>
## 41                   35 40.00 45.00        1      0.00 <NA>
## 42                    0  6.67  6.67       NA        NA <NA>
## 43                   50 23.33 33.33        1      0.00 <NA>
## 46                   35 33.33 40.00       NA        NA <NA>
## 71                   50 50.00 50.00       NA        NA <NA>
## 80                   35 35.00 30.00        2      0.00 <NA>
## 84                   35 30.00 40.00       16    282.31 <NA>
## 87                   50 45.00 50.00       NA        NA <NA>
## 88                   20 30.00 40.00        2      0.00 <NA>
## 90                   50 40.00 50.00      270    284.98 <NA>
## 93                   35 40.00 40.00      386    351.18 Used
## 94                   35 30.00 40.00        6      0.00 <NA>
## 96                    0 30.00  0.00       NA        NA <NA>
## 100                  50 45.00 40.00        8    280.84 <NA>
## 102                  20 23.33 40.00       NA        NA <NA>
## 105                   0 20.00 23.33        1      0.00 <NA>
## 107                  35 23.33 35.00        4     41.47 <NA>
## 108                  35 25.00 35.00        4     41.47 <NA>
## 115                  35 20.00 35.00       NA        NA <NA>
## 119                  50 35.00 45.00       34    733.43 <NA>
## 121                  20 30.00 30.00       NA        NA <NA>
## 122                  50 35.00 50.00       NA        NA <NA>
## 124                  35 25.00 40.00       NA        NA <NA>
## 131                  50 40.00 45.00       28    604.87 <NA>
## 136                  35 50.00 40.00       NA        NA <NA>
## 147                  35 40.00 40.00       NA        NA <NA>
## 154                  50 20.00 50.00       18      0.00 <NA>
## 173                  50 45.00 50.00       NA        NA <NA>
## 177                  35 13.33 30.00       30    182.92 <NA>
## 182                  20 30.00 35.00        7      0.00 <NA>
## 183                  35 30.00 35.00        7      0.00 <NA>
## 195                  50 30.00 50.00       19     24.88 <NA>
## 216                  50 30.00 45.00       NA        NA <NA>
## 217                  50 50.00 50.00        4      0.00 <NA>
## 233                  35 35.00 23.33       NA        NA <NA>
## 237                  50 30.00 50.00       NA        NA <NA>
## 249                   0 25.00 16.67       NA        NA <NA>
## 271                  50 30.00 50.00       NA        NA <NA>
## 280                  35 20.00 40.00     1453   1093.14 <NA>
## 290                  50 35.00 50.00       16    401.22 <NA>
## 295                  50 50.00 50.00      958    459.76 Used
## 296                  35 30.00 35.00       NA        NA <NA>
## 298                  50 45.00 45.00        2      0.00 <NA>
## 301                  35 45.00 35.00        5     59.18 <NA>
## 302                  20 45.00 13.33        5     59.18 <NA>
## 306                  50 45.00 50.00       NA        NA Used
## 315                  35 30.00 45.00     1329    345.85 <NA>
## 316                  35 40.00 40.00       NA        NA <NA>
## 320                  50 20.00 45.00       17      0.00 <NA>
pp2.used
##     StudentID SubmissionID.x MarkerID.x Intro.x Intro.y
## 93   S8534409           3300        T19      50      50
## 295  S8600971           8746        T35      50      50
## 306  S8624445           8715        T35      35      50
##     Disc.InterpFindings.x Disc.InterpFindings.y Disc.IntegrateLit.x
## 93                     35                    35                  35
## 295                    50                    50                  50
## 306                    50                    50                  50
##     Disc.IntegrateLit.y R1arg R2arg Open.min Audio.min used
## 93                   35    40    40      386     351.2 Used
## 295                  50    50    50      958     459.8 Used
## 306                  50    45    50       NA        NA Used
dim(pp2)
## [1] 60 14
dim(pp2.used)
## [1]  3 14

60 students fit the criteria of receiving 50% or less for all 3 criteria (Intro and 2x Disc) for both Reports 1 and 2. Not sure how many of these students looked at their feedback. So far have only used 3 poor to poor students

categorising used students - poor to excellent

df = stud.used
pe.used = subset(df, Intro.x < 51 & Intro.y > 79 & Disc.InterpFindings.x < 51 & Disc.InterpFindings.y > 79 & Disc.IntegrateLit.x < 51 & Disc.IntegrateLit.y > 79 )
pe2.used = pe.used[,c(1:3, 5, 23, 11, 29, 12, 30, 38:42)]

df2 = biom2011
pe = subset(df2, Intro.x < 51 & Intro.y > 79 & Disc.InterpFindings.x < 51 & Disc.InterpFindings.y > 79 & Disc.IntegrateLit.x < 51 & Disc.IntegrateLit.y > 79 )
pe2 = pe[,c(1:3, 5, 23, 11, 29, 12, 30, 38:42)]
pe2
##     StudentID SubmissionID.x MarkerID.x Intro.x Intro.y
## 50   S8497039           3364        T33      20      80
## 167  S8578821           3274        T32      50      80
## 199  S8580595           3277        T30      50      80
## 202  S8581099           8742        T09      50      80
## 235  S8584217           3266        T05      50      80
## 256  S8586659           3218        T31      50      80
## 260  S8587235           3316        T32      50      80
##     Disc.InterpFindings.x Disc.InterpFindings.y Disc.IntegrateLit.x
## 50                     35                   100                  35
## 167                    50                    80                  35
## 199                    50                    80                  35
## 202                    50                    80                  20
## 235                    50                   100                  35
## 256                    50                    80                  50
## 260                    50                    80                  35
##     Disc.IntegrateLit.y R1arg R2arg Open.min Audio.min used
## 50                  100    30 93.33       50    325.84 <NA>
## 167                 100    45 86.67       54    949.75 Used
## 199                 100    45 86.67       75     17.97 Used
## 202                  80    40 80.00      617    895.75 Used
## 235                 100    45 93.33       NA        NA <NA>
## 256                  80    50 80.00      352    598.61 <NA>
## 260                  80    45 80.00       NA        NA <NA>
pe2.used
##     StudentID SubmissionID.x MarkerID.x Intro.x Intro.y
## 167  S8578821           3274        T32      50      80
## 199  S8580595           3277        T30      50      80
## 202  S8581099           8742        T09      50      80
##     Disc.InterpFindings.x Disc.InterpFindings.y Disc.IntegrateLit.x
## 167                    50                    80                  35
## 199                    50                    80                  35
## 202                    50                    80                  20
##     Disc.IntegrateLit.y R1arg R2arg Open.min Audio.min used
## 167                 100    45 86.67       54    949.75 Used
## 199                 100    45 86.67       75     17.97 Used
## 202                  80    40 80.00      617    895.75 Used
dim(pe2)
## [1]  7 14
dim(pe2.used)
## [1]  3 14

Only 7 students fit the criteria of receiving 50% or less for all 3 criteria (Intro and 2x Disc) for Report 1 and then 80-100% for all 3 criteria (Intro and 2x Disc) for Report 2. Not sure how many of these students looked at their feedback. So far have only used 3 poor to excellent students

categorising used students - excellent to poor

df = stud.used
ep.used = subset(df, Intro.x > 79 & Intro.y < 51 & Disc.InterpFindings.x > 79 & Disc.InterpFindings.y < 51 & Disc.IntegrateLit.x > 79 & Disc.IntegrateLit.y < 51 )
ep2.used = ep.used[,c(1:3, 5, 23, 11, 29, 12, 30, 38:42)]


df2 = biom2011
ep = subset(df2, Intro.x > 79 & Intro.y < 51 & Disc.InterpFindings.x > 79 & Disc.InterpFindings.y < 51 & Disc.IntegrateLit.x > 79 & Disc.IntegrateLit.y < 51 )
ep2 = ep[,c(1:3, 5, 23, 11, 29, 12, 30, 38:42)]
ep2
##     StudentID SubmissionID.x MarkerID.x Intro.x Intro.y
## 125  S8570207           3387        T26      80      35
##     Disc.InterpFindings.x Disc.InterpFindings.y Disc.IntegrateLit.x
## 125                    80                    50                  80
##     Disc.IntegrateLit.y R1arg R2arg Open.min Audio.min used
## 125                  35    80    40       NA        NA <NA>
ep2.used
##  [1] StudentID             SubmissionID.x        MarkerID.x           
##  [4] Intro.x               Intro.y               Disc.InterpFindings.x
##  [7] Disc.InterpFindings.y Disc.IntegrateLit.x   Disc.IntegrateLit.y  
## [10] R1arg                 R2arg                 Open.min             
## [13] Audio.min             used                 
## <0 rows> (or 0-length row.names)
dim(ep2)
## [1]  1 14
dim(ep2.used)
## [1]  0 14

Only 1 student fits the criteria of receiveing 80-100% for all 3 criteria (Intro and 2x Disc) for Report 1 and then receiving 50% or less for all 3 criteria (Intro and 2x Disc) for Report 2. Not if they looked at their feedback. So far have not used any excellent to poor students

So out of list of 11 students, who is not excellent to excellent, poor to poor, or poor to excellent

stud.ee = ee2.used[,1]
stud.pp = pp2.used[,1]
stud.pe = pe2.used[,1]

df = stud.used
df$category = NA

d = stud.ee
e = NULL
for (i in 1:length(d))
  {
  e[i] = which(df[,1] == d[i])
  }

for (i in 1:length(e))
  {
  df$category[e[i]] = "ee"
  }

d = stud.pp
e = NULL
for (i in 1:length(d))
  {
  e[i] = which(df[,1] == d[i])
  }
for (i in 1:length(e))
  {
  df$category[e[i]] = "pp"
  }

d = stud.pe
e = NULL
for (i in 1:length(d))
  {
  e[i] = which(df[,1] == d[i])
  }
for (i in 1:length(e))
  {
  df$category[e[i]] = "pe"
  }

dim(df)
## [1] 11 43
which(is.na(df[,43]))
## [1] 7 8
df[c(7:8),c(1:3, 5, 23, 11, 29, 12, 30, 38:42)]
##     StudentID SubmissionID.x MarkerID.x Intro.x Intro.y
## 208  S8581667           3233        T25      80     100
## 250  S8586153           3299        T31      50     100
##     Disc.InterpFindings.x Disc.InterpFindings.y Disc.IntegrateLit.x
## 208                    65                   100                  80
## 250                    65                   100                  80
##     Disc.IntegrateLit.y R1arg  R2arg Open.min Audio.min used
## 208                 100    75 100.00       NA        NA Used
## 250                  65    65  88.33     1021     481.7 Used
d = c(df[7,1], df[8,1])
e = NULL
for (i in 1:length(d))
  {
  e[i] = which(df[,1] == d[i])
  }
for (i in 1:length(e))
  {
  df$category[e[i]] = "improved"
  }
df
##     StudentID SubmissionID.x MarkerID.x Publish.Time.x Intro.x Hypoth.x
## 53   S8515233           3223        T25 29/04/13 14:26     100       80
## 93   S8534409           3300        T19 29/04/13 14:26      50       80
## 138  S8575723           8718        T09 19/09/13 13:26      80      100
## 167  S8578821           3274        T32 29/04/13 14:26      50       80
## 199  S8580595           3277        T30 29/04/13 14:26      50       80
## 202  S8581099           8742        T09 19/09/13 13:26      50      100
## 208  S8581667           3233        T25 30/04/13 10:38      80      100
## 250  S8586153           3299        T31 29/04/13 14:26      50       80
## 275  S8588339           3283        T31 29/04/13 14:26      80      100
## 295  S8600971           8746        T35 19/09/13 13:26      50      100
## 306  S8624445           8715        T35 19/09/13 13:26      35       80
##     Methods.x Results.text.x Fig.Tables.x Legend.Title.x
## 53         80             80          100            100
## 93         50             50           50             80
## 138       100            100           65            100
## 167       100             65          100            100
## 199        50             80           80             65
## 202        80             80          100            100
## 208       100             50          100            100
## 250        65             50           35             65
## 275        80            100          100            100
## 295        65             65           65             50
## 306        65             50           65             35
##     Disc.InterpFindings.x Disc.IntegrateLit.x Refs.x Kn.PhysMechs.x
## 53                     80                  80    100             80
## 93                     35                  35     50             35
## 138                   100                 100    100             80
## 167                    50                  35     80             65
## 199                    50                  35     35             50
## 202                    50                  20     65             35
## 208                    65                  80    100             65
## 250                    65                  80     65             65
## 275                    80                  80     80             80
## 295                    50                  50     80             35
## 306                    50                  50     80             35
##     Kn.ExpApproach.x W.Structure.x W.LanguageJargon.x W.GrammarSpelling.x
## 53                65            65                100                 100
## 93                50            65                 35                  50
## 138               80            80                 80                 100
## 167               35           100                 65                 100
## 199               50            50                 50                  50
## 202               50            65                 50                  65
## 208               65            80                100                 100
## 250               80            65                 80                  65
## 275               65            80                 80                  80
## 295               65            65                 65                  65
## 306               65            50                 65                  65
##     Final.Grade.x SubmissionID.y MarkerID.y Publish.Time.y Intro.y
## 53          85.50           4807        T25  4/06/13 13:44     100
## 93          47.75           4871        T19  4/06/13 13:44      50
## 138         90.25          10629        T09 31/10/13 12:04      80
## 167         69.50           4920        T32  4/06/13 13:47      80
## 199         53.00           4916        T30  4/06/13 13:47      80
## 202         59.75          10667        T35 31/10/13 12:04      80
## 208         82.00           4841        T25  4/06/13 13:44     100
## 250         65.00           4887        T31  4/06/13 13:44     100
## 275         83.25           4910        T31  4/06/13 13:44      80
## 295         58.50          10677        T35 31/10/13 12:04      50
## 306         53.00          10652        T35 31/10/13 12:04      50
##     Hypoth.y Methods.y Results.text.y Fig.Tables.y Legend.Title.y
## 53       100       100             80          100            100
## 93        65        65             80           20             80
## 138      100       100             65          100            100
## 167      100        80            100          100            100
## 199       80        80             80          100             80
## 202      100       100            100          100             80
## 208      100       100             80           80            100
## 250      100       100             80           80            100
## 275      100       100            100          100            100
## 295       35        80             80          100            100
## 306       35        50             50          100             80
##     Disc.InterpFindings.y Disc.IntegrateLit.y Refs.y Kn.PhysMechs.y
## 53                    100                  80     65             80
## 93                     35                  35     50             35
## 138                    80                 100    100            100
## 167                    80                 100     65            100
## 199                    80                 100    100            100
## 202                    80                  80    100             80
## 208                   100                 100    100             80
## 250                   100                  65    100             80
## 275                    80                 100    100             80
## 295                    50                  50     65             50
## 306                    50                  50     65             50
##     Kn.ExpApproach.y W.Structure.y W.LanguageJargon.y W.GrammarSpelling.y
## 53               100           100                 80                 100
## 93                50            50                 50                  50
## 138              100           100                 80                 100
## 167              100           100                100                  80
## 199              100            65                 80                  80
## 202               80           100                100                  80
## 208               80           100                 80                 100
## 250              100           100                100                  80
## 275               80            80                 80                  80
## 295               50            65                 65                  50
## 306               50            80                 80                  80
##     Final.Grade.y R1arg  R2arg Open.min Audio.min used category
## 53          91.25 86.67  93.33      381    318.58 Used       ee
## 93          48.50 40.00  40.00      386    351.18 Used       pp
## 138         92.25 93.33  86.67       10    203.33 Used       ee
## 167         91.25 45.00  86.67       54    949.75 Used       pe
## 199         87.25 45.00  86.67       75     17.97 Used       pe
## 202         88.00 40.00  80.00      617    895.75 Used       pe
## 208         93.00 75.00 100.00       NA        NA Used improved
## 250         90.50 65.00  88.33     1021    481.72 Used improved
## 275         89.00 80.00  86.67      885    220.45 Used       ee
## 295         61.00 50.00  50.00      958    459.76 Used       pp
## 306         58.50 45.00  50.00       NA        NA Used       pp
stud.used = df

So 2 studens were ‘improved’ ie average to excellent

So overall that gives Mai 2 students in the ‘improved’ category (2 improved, 3 pe), the only 3 students available who were excellent to excellent (3 ee), and 3 pp.

There are many more students who were poor to poor who could be added There are a few more students who were poor to excellent who could be added

categorising used students - excellent to average

df = stud.used
ea.used = subset(df, Intro.x > 79 & Intro.y < 66 & Disc.InterpFindings.x > 79 & Disc.InterpFindings.y < 66 & Disc.IntegrateLit.x > 79 & Disc.IntegrateLit.y < 66)
ea2.used = ea.used[,c(1:3, 5, 23, 11, 29, 12, 30, 38:42)]


df2 = biom2011
ea = subset(df2, Intro.x > 79 & Intro.y < 66 & Disc.InterpFindings.x > 79 & Disc.InterpFindings.y < 66 & Disc.IntegrateLit.x > 79 & Disc.IntegrateLit.y < 66)
ea2 = ea[,c(1:3, 5, 23, 11, 29, 12, 30, 38:42)]
ea2
##     StudentID SubmissionID.x MarkerID.x Intro.x Intro.y
## 125  S8570207           3387        T26      80      35
## 148  S8576659           3333        T26     100      65
##     Disc.InterpFindings.x Disc.InterpFindings.y Disc.IntegrateLit.x
## 125                    80                    50                  80
## 148                   100                    65                 100
##     Disc.IntegrateLit.y R1arg R2arg Open.min Audio.min used
## 125                  35    80    40       NA        NA <NA>
## 148                  65   100    65       19     340.6 <NA>
ea2.used
##  [1] StudentID             SubmissionID.x        MarkerID.x           
##  [4] Intro.x               Intro.y               Disc.InterpFindings.x
##  [7] Disc.InterpFindings.y Disc.IntegrateLit.x   Disc.IntegrateLit.y  
## [10] R1arg                 R2arg                 Open.min             
## [13] Audio.min             used                 
## <0 rows> (or 0-length row.names)
dim(ea2)
## [1]  2 14
dim(ea2.used)
## [1]  0 14

categorising used students - average to poor

df = stud.used
ap.used = subset(df, Intro.x > 64 & Intro.y < 51 & Disc.InterpFindings.x > 64 & Disc.InterpFindings.y < 51 & Disc.IntegrateLit.x > 64 & Disc.IntegrateLit.y < 51)
ap2.used = ap.used[,c(1:3, 5, 23, 11, 29, 12, 30, 38:42)]


df2 = biom2011
ap = subset(df2, Intro.x > 64 & Intro.y < 51 & Disc.InterpFindings.x > 64 & Disc.InterpFindings.y < 51 & Disc.IntegrateLit.x > 64 & Disc.IntegrateLit.y < 51)
ap2 = ap[,c(1:3, 5, 23, 11, 29, 12, 30, 38:42)]
ap2
##     StudentID SubmissionID.x MarkerID.x Intro.x Intro.y
## 1    S8112187           3393        T28      65      50
## 26   S8434511           3259        T31      65      50
## 125  S8570207           3387        T26      80      35
## 231  S8583795           3345        T26      65      50
## 240  S8584831           8716        T09      80      50
##     Disc.InterpFindings.x Disc.InterpFindings.y Disc.IntegrateLit.x
## 1                     100                    50                  80
## 26                     80                    50                  80
## 125                    80                    50                  80
## 231                    65                    35                  65
## 240                    65                     0                  65
##     Disc.IntegrateLit.y R1arg R2arg Open.min Audio.min used
## 1                    35 81.67 45.00      192     181.1 <NA>
## 26                   50 75.00 50.00       26     601.4 <NA>
## 125                  35 80.00 40.00       NA        NA <NA>
## 231                  50 65.00 45.00        0       0.0 <NA>
## 240                  20 70.00 23.33       32       0.0 <NA>
ap2.used
##  [1] StudentID             SubmissionID.x        MarkerID.x           
##  [4] Intro.x               Intro.y               Disc.InterpFindings.x
##  [7] Disc.InterpFindings.y Disc.IntegrateLit.x   Disc.IntegrateLit.y  
## [10] R1arg                 R2arg                 Open.min             
## [13] Audio.min             used                 
## <0 rows> (or 0-length row.names)
dim(ap2)
## [1]  5 14
dim(ap2.used)
## [1]  0 14

categorising all students

all.ee = ee2[,1]
all.pp = pp2[,1]
all.pe = pe2[,1]
all.ea = ea2[,1]
all.ap = ap2[,1]

df = biom2011
df$category = NA

d = all.ee
e = NULL
for (i in 1:length(d))
  {
  e[i] = which(df[,1] == d[i])
  }

for (i in 1:length(e))
  {
  df$category[e[i]] = "ee"
  }

d = all.pp
e = NULL
for (i in 1:length(d))
  {
  e[i] = which(df[,1] == d[i])
  }
## Warning: number of items to replace is not a multiple of replacement length
## Warning: number of items to replace is not a multiple of replacement length
## Warning: number of items to replace is not a multiple of replacement length
## Warning: number of items to replace is not a multiple of replacement length
## Warning: number of items to replace is not a multiple of replacement length
## Warning: number of items to replace is not a multiple of replacement length
## Warning: number of items to replace is not a multiple of replacement length
## Warning: number of items to replace is not a multiple of replacement length
## Warning: number of items to replace is not a multiple of replacement length
## Warning: number of items to replace is not a multiple of replacement length
## Warning: number of items to replace is not a multiple of replacement length
for (i in 1:length(e))
  {
  df$category[e[i]] = "pp"
  }

d = all.pe
e = NULL
for (i in 1:length(d))
  {
  e[i] = which(df[,1] == d[i])
  }
for (i in 1:length(e))
  {
  df$category[e[i]] = "pe"
  }

d = all.ea
e = NULL
for (i in 1:length(d))
  {
  e[i] = which(df[,1] == d[i])
  }

for (i in 1:length(e))
  {
  df$category[e[i]] = "ea"
  }

d = all.ap
e = NULL
for (i in 1:length(d))
  {
  e[i] = which(df[,1] == d[i])
  }

for (i in 1:length(e))
  {
  df$category[e[i]] = "ap"
  }

dim(df)
## [1] 320  43
df[1:5,c(38:42)]
##   R1arg R2arg Open.min Audio.min used
## 1 81.67 45.00      192     181.1 <NA>
## 2 35.00 65.00       12     275.4 <NA>
## 3 60.00 70.00       31     170.0 <NA>
## 4 60.00 60.00        5     114.7 <NA>
## 5 71.67 86.67       18       0.0 <NA>
ifelse(is.na(df[,42]), "unused", df[,42]) -> temp
df$used = temp

biom2011 = df

biom2011$category[208] = "improved"
biom2011$category[250] = "improved"

subsets of students to send to Mai

df = biom2011

unused.pp = subset(df, used == "unused" & category == "pp" & Open.min > 3)
unused.pp[,c(1:3, 5, 23, 11, 29, 12, 30, 38:41)]
##     StudentID SubmissionID.x MarkerID.x Intro.x Intro.y
## 27   S8452823           8769        T30      50      50
## 29   S8456363           3200        T09      20      35
## 36   S8468457           3390        T09      35      35
## 84   S8530473           3220        T05      35      35
## 90   S8532163           3363        T33      35      50
## 94   S8534971           3306        T32      35      50
## 100  S8536879           3337        T30      50      35
## 107  S8549911           8714        T29      35      35
## 119  S8566849           3305        T19      35      35
## 131  S8574613           3624        T19      50      50
## 154  S8577287           3336        T33      20      50
## 177  S8579545           3361        T26      20      20
## 182  S8579733           3237        T31      35      50
## 195  S8580303           3315        T32      35      50
## 217  S8582337           8684        T35      50      50
## 280  S8589129           3878        T28      20      50
## 290  S8594143           3297        T31      20      50
## 301  S8607681           3169        T08      35      35
## 315  S8651257           3335        T33      20      50
## 320  S8668771           8745        T35      20      35
##     Disc.InterpFindings.x Disc.InterpFindings.y Disc.IntegrateLit.x
## 27                     35                    35                  50
## 29                     20                    50                  20
## 36                     35                    50                  35
## 84                     35                    50                  20
## 90                     50                    50                  35
## 94                     20                    35                  35
## 100                    50                    35                  35
## 107                    35                    35                   0
## 119                    35                    50                  35
## 131                    50                    35                  20
## 154                    20                    50                  20
## 177                    20                    35                   0
## 182                    20                    35                  35
## 195                    35                    50                  20
## 217                    50                    50                  50
## 280                    20                    35                  20
## 290                    35                    50                  50
## 301                    50                    35                  50
## 315                    35                    50                  35
## 320                    20                    50                  20
##     Disc.IntegrateLit.y R1arg R2arg Open.min Audio.min
## 27                   35 45.00    40       12     31.14
## 29                   20 20.00    35       48   1870.88
## 36                   35 35.00    40      165   4530.56
## 84                   35 30.00    40       16    282.31
## 90                   50 40.00    50      270    284.98
## 94                   35 30.00    40        6      0.00
## 100                  50 45.00    40        8    280.84
## 107                  35 23.33    35        4     41.47
## 119                  50 35.00    45       34    733.43
## 131                  50 40.00    45       28    604.87
## 154                  50 20.00    50       18      0.00
## 177                  35 13.33    30       30    182.92
## 182                  20 30.00    35        7      0.00
## 195                  50 30.00    50       19     24.88
## 217                  50 50.00    50        4      0.00
## 280                  35 20.00    40     1453   1093.14
## 290                  50 35.00    50       16    401.22
## 301                  35 45.00    35        5     59.18
## 315                  35 30.00    45     1329    345.85
## 320                  50 20.00    45       17      0.00
unused.pp.stud = unused.pp[,c(1:3,20:21,38:41,43)]

unused.pe = subset(df, used == "unused" & category == "pe" & Open.min > 3)
unused.pe[,c(1:3, 5, 23, 11, 29, 12, 30, 38:41)]
##     StudentID SubmissionID.x MarkerID.x Intro.x Intro.y
## 50   S8497039           3364        T33      20      80
## 256  S8586659           3218        T31      50      80
##     Disc.InterpFindings.x Disc.InterpFindings.y Disc.IntegrateLit.x
## 50                     35                   100                  35
## 256                    50                    80                  50
##     Disc.IntegrateLit.y R1arg R2arg Open.min Audio.min
## 50                  100    30 93.33       50     325.8
## 256                  80    50 80.00      352     598.6
unused.pe.stud = unused.pe[,c(1:3,20:21,38:41,43)]

unused.ea = subset(df, used == "unused" & category == "ea" & Open.min > 3)
unused.ea[,c(1:3, 5, 23, 11, 29, 12, 30, 38:41)]
##     StudentID SubmissionID.x MarkerID.x Intro.x Intro.y
## 148  S8576659           3333        T26     100      65
##     Disc.InterpFindings.x Disc.InterpFindings.y Disc.IntegrateLit.x
## 148                   100                    65                 100
##     Disc.IntegrateLit.y R1arg R2arg Open.min Audio.min
## 148                  65   100    65       19     340.6
unused.ea.stud = unused.ea[,c(1:3,20:21,38:41,43)]

unused.ap = subset(df, used == "unused" & category == "ap" & Open.min > 3)
unused.ap[,c(1:3, 5, 23, 11, 29, 12, 30, 38:41)]
##     StudentID SubmissionID.x MarkerID.x Intro.x Intro.y
## 1    S8112187           3393        T28      65      50
## 26   S8434511           3259        T31      65      50
## 240  S8584831           8716        T09      80      50
##     Disc.InterpFindings.x Disc.InterpFindings.y Disc.IntegrateLit.x
## 1                     100                    50                  80
## 26                     80                    50                  80
## 240                    65                     0                  65
##     Disc.IntegrateLit.y R1arg R2arg Open.min Audio.min
## 1                    35 81.67 45.00      192     181.1
## 26                   50 75.00 50.00       26     601.4
## 240                  20 70.00 23.33       32       0.0
unused.ap.stud = unused.ap[,c(1:3,20:21,38:41,43)]

get.decline = rbind(unused.ea.stud, unused.ap.stud)
get.pp = unused.pp.stud

So, have all the excellent to excellent and, have 5 improved just need 5 declined

dim(get.decline)
## [1]  4 10
get.decline
##     StudentID SubmissionID.x MarkerID.x SubmissionID.y MarkerID.y  R1arg
## 148  S8576659           3333        T26           4971        T34 100.00
## 1    S8112187           3393        T28           5036        T19  81.67
## 26   S8434511           3259        T31           4802        T31  75.00
## 240  S8584831           8716        T09          10621        T09  70.00
##     R2arg Open.min Audio.min category
## 148 65.00       19     340.6       ea
## 1   45.00      192     181.1       ap
## 26  50.00       26     601.4       ap
## 240 23.33       32       0.0       ap

using get decline

df = biom2011
which(df[,1] == "S8576659")
## [1] 148
df[148,42] = "new.used"
df[1,42] = "new.used"
df[26,42] = "dud"
df[240,42] = "new.used"

biom2011 = df

looking for more declined

unused.ap2 = subset(df, used == "unused" & category == "ap")
unused.ap2[,c(1:3, 5, 23, 11, 29, 12, 30, 38:41)]
##     StudentID SubmissionID.x MarkerID.x Intro.x Intro.y
## 125  S8570207           3387        T26      80      35
## 231  S8583795           3345        T26      65      50
##     Disc.InterpFindings.x Disc.InterpFindings.y Disc.IntegrateLit.x
## 125                    80                    50                  80
## 231                    65                    35                  65
##     Disc.IntegrateLit.y R1arg R2arg Open.min Audio.min
## 125                  35    80    40       NA        NA
## 231                  50    65    45        0         0
unused.ap2.stud = unused.ap2[,c(1:3,38:41,43)]

unused.ea2 = subset(df, used == "unused" & category == "ea")
unused.ea2[,c(1:3, 5, 23, 11, 29, 12, 30, 38:41)]
##  [1] StudentID             SubmissionID.x        MarkerID.x           
##  [4] Intro.x               Intro.y               Disc.InterpFindings.x
##  [7] Disc.InterpFindings.y Disc.IntegrateLit.x   Disc.IntegrateLit.y  
## [10] R1arg                 R2arg                 Open.min             
## [13] Audio.min            
## <0 rows> (or 0-length row.names)
unused.ea2.stud = unused.ea2[,c(1:3,38:41,43)]

ep
##     StudentID SubmissionID.x MarkerID.x Publish.Time.x Intro.x Hypoth.x
## 125  S8570207           3387        T26 29/04/13 14:29      80      100
##     Methods.x Results.text.x Fig.Tables.x Legend.Title.x
## 125        50             65           50             65
##     Disc.InterpFindings.x Disc.IntegrateLit.x Refs.x Kn.PhysMechs.x
## 125                    80                  80     80             80
##     Kn.ExpApproach.x W.Structure.x W.LanguageJargon.x W.GrammarSpelling.x
## 125               80            80                 80                  80
##     Final.Grade.x SubmissionID.y MarkerID.y Publish.Time.y Intro.y
## 125            75           4942        T34  4/06/13 13:48      35
##     Hypoth.y Methods.y Results.text.y Fig.Tables.y Legend.Title.y
## 125       80        50             35           80             35
##     Disc.InterpFindings.y Disc.IntegrateLit.y Refs.y Kn.PhysMechs.y
## 125                    50                  35     80             50
##     Kn.ExpApproach.y W.Structure.y W.LanguageJargon.y W.GrammarSpelling.y
## 125               65            80                 65                  35
##     Final.Grade.y R1arg R2arg Open.min Audio.min used
## 125         52.25    80    40       NA        NA <NA>

and 2 more poor to poor

dim(get.pp)
## [1] 20 10
get.pp
##     StudentID SubmissionID.x MarkerID.x SubmissionID.y MarkerID.y R1arg
## 27   S8452823           8769        T30          10646        T29 45.00
## 29   S8456363           3200        T09           4994        T09 20.00
## 36   S8468457           3390        T09           5381        T09 35.00
## 84   S8530473           3220        T05           4858        T05 30.00
## 90   S8532163           3363        T33           4959        T09 40.00
## 94   S8534971           3306        T32           4872        T32 30.00
## 100  S8536879           3337        T30           4961        T30 45.00
## 107  S8549911           8714        T29          10651        T29 23.33
## 119  S8566849           3305        T19           4878        T19 35.00
## 131  S8574613           3624        T19           4879        T19 40.00
## 154  S8577287           3336        T33           4939        T09 20.00
## 177  S8579545           3361        T26           4965        T34 13.33
## 182  S8579733           3237        T31           4819        T31 30.00
## 195  S8580303           3315        T32           4919        T32 30.00
## 217  S8582337           8684        T35          10665        T35 50.00
## 280  S8589129           3878        T28           5022        T28 20.00
## 290  S8594143           3297        T31           4873        T31 35.00
## 301  S8607681           3169        T08           5001        T08 45.00
## 315  S8651257           3335        T33           4947        T33 30.00
## 320  S8668771           8745        T35          10655        T35 20.00
##     R2arg Open.min Audio.min category
## 27     40       12     31.14       pp
## 29     35       48   1870.88       pp
## 36     40      165   4530.56       pp
## 84     40       16    282.31       pp
## 90     50      270    284.98       pp
## 94     40        6      0.00       pp
## 100    40        8    280.84       pp
## 107    35        4     41.47       pp
## 119    45       34    733.43       pp
## 131    45       28    604.87       pp
## 154    50       18      0.00       pp
## 177    30       30    182.92       pp
## 182    35        7      0.00       pp
## 195    50       19     24.88       pp
## 217    50        4      0.00       pp
## 280    40     1453   1093.14       pp
## 290    50       16    401.22       pp
## 301    35        5     59.18       pp
## 315    45     1329    345.85       pp
## 320    45       17      0.00       pp
unused.pp
##     StudentID SubmissionID.x MarkerID.x Publish.Time.x Intro.x Hypoth.x
## 27   S8452823           8769        T30 19/09/13 13:26      50       65
## 29   S8456363           3200        T09 30/04/13 10:44      20       65
## 36   S8468457           3390        T09 29/04/13 14:29      35      100
## 84   S8530473           3220        T05 29/04/13 14:26      35      100
## 90   S8532163           3363        T33 29/04/13 14:29      35       80
## 94   S8534971           3306        T32 29/04/13 14:26      35       50
## 100  S8536879           3337        T30 29/04/13 14:31      50      100
## 107  S8549911           8714        T29 19/09/13 13:26      35       65
## 119  S8566849           3305        T19 29/04/13 14:26      35       35
## 131  S8574613           3624        T19 29/04/13 14:26      50       65
## 154  S8577287           3336        T33 29/04/13 14:31      20       35
## 177  S8579545           3361        T26 29/04/13 14:30      20      100
## 182  S8579733           3237        T31 29/04/13 14:29      35       80
## 195  S8580303           3315        T32 29/04/13 14:26      35       80
## 217  S8582337           8684        T35 19/09/13 13:26      50       50
## 280  S8589129           3878        T28 29/04/13 14:29      20       80
## 290  S8594143           3297        T31 29/04/13 14:26      20       65
## 301  S8607681           3169        T08 29/04/13 14:26      35       80
## 315  S8651257           3335        T33 29/04/13 14:31      20       65
## 320  S8668771           8745        T35 19/09/13 13:26      20       50
##     Methods.x Results.text.x Fig.Tables.x Legend.Title.x
## 27         50             65           65             50
## 29         35              0           35             35
## 36         80             20          100            100
## 84         80             80           80            100
## 90         50             80          100             80
## 94         35             35           80             35
## 100        65             65          100            100
## 107        65             65           80             35
## 119        35             35           50             50
## 131        50             65            0              0
## 154        35             20          100             50
## 177        80              0          100             65
## 182        50             20           50             80
## 195        80             50          100            100
## 217        80             50           50             35
## 280        80             50           80            100
## 290        50             35           20             20
## 301        65             65           80             80
## 315       100             35           35             50
## 320        50             35           80             65
##     Disc.InterpFindings.x Disc.IntegrateLit.x Refs.x Kn.PhysMechs.x
## 27                     35                  50     50             35
## 29                     20                  20     50              0
## 36                     35                  35     20             35
## 84                     35                  20     80             35
## 90                     50                  35     80             50
## 94                     20                  35     35             20
## 100                    50                  35     35             35
## 107                    35                   0     50             35
## 119                    35                  35     50             50
## 131                    50                  20     65             35
## 154                    20                  20     35              0
## 177                    20                   0     20             20
## 182                    20                  35     35             20
## 195                    35                  20     35             50
## 217                    50                  50     65             35
## 280                    20                  20     20             35
## 290                    35                  50     50             35
## 301                    50                  50     35             20
## 315                    35                  35     65             35
## 320                    20                  20     50             20
##     Kn.ExpApproach.x W.Structure.x W.LanguageJargon.x W.GrammarSpelling.x
## 27                35            50                 50                  50
## 29                20            50                 20                  20
## 36                20            80                 50                  50
## 84                50            65                 80                  80
## 90                65            65                 65                  65
## 94                35           100                 50                  80
## 100               50            50                 50                  35
## 107               35            50                 65                  65
## 119               50            50                 35                  35
## 131               50            50                 50                  65
## 154               20            35                 20                  20
## 177               20            50                 65                  65
## 182               35            80                 20                  50
## 195               35            80                 65                 100
## 217               50            50                 50                  50
## 280               35            50                 65                  80
## 290               35            65                 50                  50
## 301               65            50                 50                  65
## 315               20            50                 35                  50
## 320               65            35                 65                  65
##     Final.Grade.x SubmissionID.y MarkerID.y Publish.Time.y Intro.y
## 27          48.50          10646        T29 31/10/13 12:04      50
## 29          24.25           4994        T09  4/06/13 13:47      35
## 36          50.75           5381        T09  4/06/13 13:47      35
## 84          58.00           4858        T05  4/06/13 13:48      35
## 90          58.50           4959        T09  4/06/13 13:47      50
## 94          40.50           4872        T32  4/06/13 13:44      50
## 100         54.50           4961        T30  4/06/13 13:47      35
## 107         44.25          10651        T29 31/10/13 12:04      35
## 119         41.00           4878        T19  4/06/13 13:44      35
## 131         42.75           4879        T19  4/06/13 13:44      50
## 154         26.25           4939        T09  4/06/13 13:47      50
## 177         39.25           4965        T34  4/06/13 13:47      20
## 182         39.50           4819        T31  4/06/13 13:44      50
## 195         56.75           4919        T32  4/06/13 13:47      50
## 217         51.50          10665        T35 31/10/13 12:04      50
## 280         47.25           5022        T28  4/06/13 13:47      50
## 290         40.25           4873        T31  4/06/13 13:44      50
## 301         51.50           5001        T08 12/08/13 10:07      35
## 315         44.50           4947        T33  4/06/13 13:47      50
## 320         39.50          10655        T35 31/10/13 12:04      35
##     Hypoth.y Methods.y Results.text.y Fig.Tables.y Legend.Title.y
## 27       100        80             50           80             65
## 29       100        80             65           80             50
## 36       100       100            100          100            100
## 84       100        80            100          100             80
## 90       100        80             65           65             35
## 94       100        80             35           80             80
## 100      100        80             80          100             80
## 107       80        50             50          100             50
## 119      100        80             50           80             65
## 131       65        50             50           80             50
## 154      100        80             35           65             50
## 177       65        65             50           50              0
## 182       65        50             80           80             65
## 195      100        80            100          100            100
## 217      100        65             65           80             50
## 280      100        80             50           80             80
## 290       65        50             50           35             65
## 301      100        80              0          100            100
## 315       65        80             35           50             50
## 320       80        50             35           80             50
##     Disc.InterpFindings.y Disc.IntegrateLit.y Refs.y Kn.PhysMechs.y
## 27                     35                  35     65             35
## 29                     50                  20     80             35
## 36                     50                  35     65             35
## 84                     50                  35     80             35
## 90                     50                  50    100             35
## 94                     35                  35     35             35
## 100                    35                  50     65             50
## 107                    35                  35     65             35
## 119                    50                  50     65             50
## 131                    35                  50     80             50
## 154                    50                  50     50             20
## 177                    35                  35     50             50
## 182                    35                  20     35             50
## 195                    50                  50     65             50
## 217                    50                  50     50             50
## 280                    35                  35     35             35
## 290                    50                  50     65             50
## 301                    35                  35     35             35
## 315                    50                  35     80             35
## 320                    50                  50     80             50
##     Kn.ExpApproach.y W.Structure.y W.LanguageJargon.y W.GrammarSpelling.y
## 27                35            50                 35                  50
## 29                50            80                 35                  20
## 36                50            80                 50                  80
## 84                35            65                 65                  80
## 90                65           100                 65                  50
## 94                35            80                 50                  65
## 100               65            50                 50                  50
## 107               35            50                 50                  80
## 119               50            65                 35                  50
## 131               50            50                 65                  65
## 154               35            80                 20                  20
## 177               50            50                 35                  50
## 182               50            65                 50                  50
## 195               65           100                 50                 100
## 217               65            50                 80                  80
## 280               35            50                 65                  65
## 290               50            65                 50                  50
## 301               50            50                 65                  65
## 315               50            50                 50                  80
## 320               65            80                 80                  80
##     Final.Grade.y R1arg R2arg Open.min Audio.min   used category
## 27          52.50 45.00    40       12     31.14 unused       pp
## 29          51.75 20.00    35       48   1870.88 unused       pp
## 36          63.50 35.00    40      165   4530.56 unused       pp
## 84          60.50 30.00    40       16    282.31 unused       pp
## 90          60.50 40.00    50      270    284.98 unused       pp
## 94          53.25 30.00    40        6      0.00 unused       pp
## 100         59.50 45.00    40        8    280.84 unused       pp
## 107         48.75 23.33    35        4     41.47 unused       pp
## 119         57.00 35.00    45       34    733.43 unused       pp
## 131         53.75 40.00    45       28    604.87 unused       pp
## 154         48.75 20.00    50       18      0.00 unused       pp
## 177         43.00 13.33    30       30    182.92 unused       pp
## 182         50.00 30.00    35        7      0.00 unused       pp
## 195         69.50 30.00    50       19     24.88 unused       pp
## 217         60.00 50.00    50        4      0.00 unused       pp
## 280         53.25 20.00    40     1453   1093.14 unused       pp
## 290         52.25 35.00    50       16    401.22 unused       pp
## 301         52.00 45.00    35        5     59.18 unused       pp
## 315         52.25 30.00    45     1329    345.85 unused       pp
## 320         56.75 20.00    45       17      0.00 unused       pp
unused.pp2 = subset(unused.pp, Open.min >30)
dim(unused.pp2)
## [1]  6 43
unused.pp2
##     StudentID SubmissionID.x MarkerID.x Publish.Time.x Intro.x Hypoth.x
## 29   S8456363           3200        T09 30/04/13 10:44      20       65
## 36   S8468457           3390        T09 29/04/13 14:29      35      100
## 90   S8532163           3363        T33 29/04/13 14:29      35       80
## 119  S8566849           3305        T19 29/04/13 14:26      35       35
## 280  S8589129           3878        T28 29/04/13 14:29      20       80
## 315  S8651257           3335        T33 29/04/13 14:31      20       65
##     Methods.x Results.text.x Fig.Tables.x Legend.Title.x
## 29         35              0           35             35
## 36         80             20          100            100
## 90         50             80          100             80
## 119        35             35           50             50
## 280        80             50           80            100
## 315       100             35           35             50
##     Disc.InterpFindings.x Disc.IntegrateLit.x Refs.x Kn.PhysMechs.x
## 29                     20                  20     50              0
## 36                     35                  35     20             35
## 90                     50                  35     80             50
## 119                    35                  35     50             50
## 280                    20                  20     20             35
## 315                    35                  35     65             35
##     Kn.ExpApproach.x W.Structure.x W.LanguageJargon.x W.GrammarSpelling.x
## 29                20            50                 20                  20
## 36                20            80                 50                  50
## 90                65            65                 65                  65
## 119               50            50                 35                  35
## 280               35            50                 65                  80
## 315               20            50                 35                  50
##     Final.Grade.x SubmissionID.y MarkerID.y Publish.Time.y Intro.y
## 29          24.25           4994        T09  4/06/13 13:47      35
## 36          50.75           5381        T09  4/06/13 13:47      35
## 90          58.50           4959        T09  4/06/13 13:47      50
## 119         41.00           4878        T19  4/06/13 13:44      35
## 280         47.25           5022        T28  4/06/13 13:47      50
## 315         44.50           4947        T33  4/06/13 13:47      50
##     Hypoth.y Methods.y Results.text.y Fig.Tables.y Legend.Title.y
## 29       100        80             65           80             50
## 36       100       100            100          100            100
## 90       100        80             65           65             35
## 119      100        80             50           80             65
## 280      100        80             50           80             80
## 315       65        80             35           50             50
##     Disc.InterpFindings.y Disc.IntegrateLit.y Refs.y Kn.PhysMechs.y
## 29                     50                  20     80             35
## 36                     50                  35     65             35
## 90                     50                  50    100             35
## 119                    50                  50     65             50
## 280                    35                  35     35             35
## 315                    50                  35     80             35
##     Kn.ExpApproach.y W.Structure.y W.LanguageJargon.y W.GrammarSpelling.y
## 29                50            80                 35                  20
## 36                50            80                 50                  80
## 90                65           100                 65                  50
## 119               50            65                 35                  50
## 280               35            50                 65                  65
## 315               50            50                 50                  80
##     Final.Grade.y R1arg R2arg Open.min Audio.min   used category
## 29          51.75    20    35       48    1870.9 unused       pp
## 36          63.50    35    40      165    4530.6 unused       pp
## 90          60.50    40    50      270     285.0 unused       pp
## 119         57.00    35    45       34     733.4 unused       pp
## 280         53.25    20    40     1453    1093.1 unused       pp
## 315         52.25    30    45     1329     345.9 unused       pp
df2 = unused.pp2
df2[,c(1:3,20:21,38:41,43)]
##     StudentID SubmissionID.x MarkerID.x SubmissionID.y MarkerID.y R1arg
## 29   S8456363           3200        T09           4994        T09    20
## 36   S8468457           3390        T09           5381        T09    35
## 90   S8532163           3363        T33           4959        T09    40
## 119  S8566849           3305        T19           4878        T19    35
## 280  S8589129           3878        T28           5022        T28    20
## 315  S8651257           3335        T33           4947        T33    30
##     R2arg Open.min Audio.min category
## 29     35       48    1870.9       pp
## 36     40      165    4530.6       pp
## 90     50      270     285.0       pp
## 119    45       34     733.4       pp
## 280    40     1453    1093.1       pp
## 315    45     1329     345.9       pp

using pp

df = biom2011

df[36,42] = "new.used"
df[280,42]= "new.used"

biom2011 = df

for Hyab, setting up AcP and FbU for BIOM2013

list2env(AcP.biom, environment())
## <environment: R_GlobalEnv>
AcP.2013 = BIOM2013Sem1Report
list2env(FbU.biom, environment())
## <environment: R_GlobalEnv>
FbU.2013 = BIOM2013Sem1Report

AcP.2013[1:3,]
##   X SubmissionID StudentID MarkerID  Publish.Time Summary Results.text
## 1 1         5391  S8587733      T31 5/06/13 10:25     N/A           80
## 2 2         5390  S8577745      N/A           N/A     N/A           NA
## 3 3         5389  S8538305      T31 5/06/13 10:25     N/A           80
##   Methods Hypoth Intro Fig.Tables Legend.Title Disc.InterpFindings
## 1      50    100    65         80           65                  50
## 2      NA     NA    NA         NA           NA                  NA
## 3      80    100    80         80          100                  80
##   Disc.IntegrateLit Refs Kn.PhysMechs Kn.ExpApproach W.Structure
## 1                35   80           50             65          65
## 2                NA   NA           NA             NA          NA
## 3                65   80           80             80         100
##   W.LanguageJargon W.GrammarSpelling Final.Grade
## 1               50                50       59.25
## 2               NA                NA          NA
## 3               80                65       80.75
dim(AcP.2013)
## [1] 65 21
AcP.2013 = AcP.2013[,2:21]
FbU.2013[1:3,]
##   X EventID SubmissionID StudentID Consent MarkerID Audio.Annot Log.Type
## 1 1  384337         5442  S8530999     Yes      T40           0        2
## 2 2  384338         5442  S8530999     Yes      T40           0        2
## 3 3  384339         5442  S8530999     Yes      T40           0        2
##   Interaction          Date  State Pages Start End Page.Size
## 1   Automatic 5/06/13 14:41 opened    NA    NA  NA        NA
## 2 Annotations 5/06/13 14:42           NA    NA  NA        NA
## 3      Scroll 5/06/13 14:42           NA     0   0         6
##   msec.B4.scroll AnnotID From.time Current.time Duration Filename
## 1             NA      NA        NA           NA       NA         
## 2             NA      NA        NA           NA       NA         
## 3          11861      NA        NA           NA       NA
dim(FbU.2013)
## [1] 4980   21
FbU.2013 = FbU.2013[,2:21]

analysing FbU

df = FbU.2013

df.studs = round(tapply(df$msec.B4.scroll, df$StudentID, sum, na.rm=T)/60000)
head(df.studs)
## S8473219 S8515099 S8515955 S8521469 S8530999 S8533655 
##        4       25        8       46       12        2
df.studs = as.data.frame(df.studs)
df.studs$StudentID = rownames(df.studs)
rownames(df.studs) = 1:nrow(df.studs)
names(df.studs) = c("Open.min", "StudentID")

FbU.sum = df.studs

df.studs = tapply(df$Duration, df$StudentID, sum, na.rm=T)
df.studs = as.data.frame(df.studs)
df.studs$StudentID = rownames(df.studs)
rownames(df.studs) = 1:nrow(df.studs)
names(df.studs) = c("Audio.min", "StudentID")

FbU.sum = merge(FbU.sum, df.studs, by="StudentID", all.x=T)
head(FbU.sum)
##   StudentID Open.min Audio.min
## 1  S8473219        4       0.0
## 2  S8515099       25     126.2
## 3  S8515955        8       0.0
## 4  S8521469       46       0.0
## 5  S8530999       12       0.0
## 6  S8533655        2       0.0

merge into AcP.2013

df = AcP.2013
df = merge(df, FbU.sum, by="StudentID", all.x=T)
head(df)
##   StudentID SubmissionID MarkerID  Publish.Time Summary Results.text
## 1  S8473219         5439      T39 5/06/13 10:25     N/A           80
## 2  S8515099         5438      T34 5/06/13 10:25     N/A           35
## 3  S8515955         5421      T39 5/06/13 10:25     N/A           80
## 4  S8521007         5388      T42 5/06/13 10:25     N/A           50
## 5  S8521469         5437      T39 5/06/13 10:25     N/A           80
## 6  S8524971         5397      T39 5/06/13 10:25     N/A           50
##   Methods Hypoth Intro Fig.Tables Legend.Title Disc.InterpFindings
## 1      80    100    65         80           50                  65
## 2      65     80    50         50            0                  35
## 3      80     65    65        100           65                  65
## 4      65     65    50         35           50                  35
## 5     100     65   100         80          100                 100
## 6     100    100    35         80           65                  50
##   Disc.IntegrateLit Refs Kn.PhysMechs Kn.ExpApproach W.Structure
## 1                50  100           50             50          50
## 2                 0   50           35             50          50
## 3                65  100           80             65          50
## 4                35   20           35             50          65
## 5               100  100          100            100          65
## 6                50  100           35             65          65
##   W.LanguageJargon W.GrammarSpelling Final.Grade Open.min Audio.min
## 1               50                65       64.75        4       0.0
## 2               35                65       41.00       25     126.2
## 3               50                65       71.50        8       0.0
## 4               65                65       47.00       NA        NA
## 5               65                65       91.00       46       0.0
## 6               65                65       61.50       NA        NA
AcP.2013 = df

categorising for Hyab

df = AcP.2013 
excel = subset(df, Disc.InterpFindings > 79 & Disc.IntegrateLit > 79)
poor = subset(df, Disc.InterpFindings < 51 & Disc.IntegrateLit < 51)

dim(excel)
## [1] 16 22
dim(poor)
## [1] 18 22
names(excel)
##  [1] "StudentID"           "SubmissionID"        "MarkerID"           
##  [4] "Publish.Time"        "Summary"             "Results.text"       
##  [7] "Methods"             "Hypoth"              "Intro"              
## [10] "Fig.Tables"          "Legend.Title"        "Disc.InterpFindings"
## [13] "Disc.IntegrateLit"   "Refs"                "Kn.PhysMechs"       
## [16] "Kn.ExpApproach"      "W.Structure"         "W.LanguageJargon"   
## [19] "W.GrammarSpelling"   "Final.Grade"         "Open.min"           
## [22] "Audio.min"
excel[,c(1:3, 12:17, 20)]
##    StudentID SubmissionID MarkerID Disc.InterpFindings Disc.IntegrateLit
## 5   S8521469         5437      T39                 100               100
## 11  S8538543         5396      T34                  80                80
## 14  S8559631         5394      T41                  80               100
## 28  S8577745         5399      T31                 100                80
## 29  S8577833         5409      T41                 100               100
## 31  S8578165         5426      T40                  80                80
## 32  S8578203         5418      T41                  80               100
## 33  S8578771         5422      T34                  80                80
## 34  S8578975         5511      T39                 100               100
## 44  S8582787         5429      T34                  80                80
## 45  S8583063         5420      T34                 100                80
## 48  S8583699         5428      T39                 100                80
## 56  S8585719         5398      T34                 100                80
## 57  S8586581         5400      T40                  80                80
## 58  S8586823         5416      T40                  80                80
## 63  S8606467         5406      T40                  80                80
##    Refs Kn.PhysMechs Kn.ExpApproach W.Structure Final.Grade
## 5   100          100            100          65       91.00
## 11   80          100            100         100       94.00
## 14  100            0             80          65       67.00
## 28  100          100            100          65       86.00
## 29  100          100            100         100       95.25
## 31   65           80             80          65       74.00
## 32   80            0            100         100       81.00
## 33   80           80             80          65       76.50
## 34  100           80            100          80       90.25
## 44   80           50             80          65       65.75
## 45  100           80             80          80       83.50
## 48  100           80            100          80       85.50
## 56   80          100             80         100       93.00
## 57   50           80             80          80       74.00
## 58   80           65             65          80       72.50
## 63   80           65             80          65       75.75
excel.all = subset(df, Disc.InterpFindings > 79 & Disc.IntegrateLit > 79 & Kn.PhysMechs > 79 & Kn.ExpApproach > 79 & W.Structure > 79)
dim(excel.all)
## [1]  7 22
excel.all[,c(1:3, 12:17, 20)]
##    StudentID SubmissionID MarkerID Disc.InterpFindings Disc.IntegrateLit
## 11  S8538543         5396      T34                  80                80
## 29  S8577833         5409      T41                 100               100
## 34  S8578975         5511      T39                 100               100
## 45  S8583063         5420      T34                 100                80
## 48  S8583699         5428      T39                 100                80
## 56  S8585719         5398      T34                 100                80
## 57  S8586581         5400      T40                  80                80
##    Refs Kn.PhysMechs Kn.ExpApproach W.Structure Final.Grade
## 11   80          100            100         100       94.00
## 29  100          100            100         100       95.25
## 34  100           80            100          80       90.25
## 45  100           80             80          80       83.50
## 48  100           80            100          80       85.50
## 56   80          100             80         100       93.00
## 57   50           80             80          80       74.00
excel.all[,1]
## [1] "S8538543" "S8577833" "S8578975" "S8583063" "S8583699" "S8585719"
## [7] "S8586581"
poor.all = subset(df, Disc.InterpFindings < 51 & Disc.IntegrateLit < 51 & Kn.PhysMechs < 51 & Kn.ExpApproach < 51 & W.Structure < 51)
dim(poor.all)
## [1] 10 22
poor.all[,c(1:3, 12:17, 20)]
##    StudentID SubmissionID MarkerID Disc.InterpFindings Disc.IntegrateLit
## 2   S8515099         5438      T34                  35                 0
## 7   S8530999         5442      T40                  20                 0
## 13  S8547061         5462      T31                  50                20
## 35  S8579291         5411      T31                  50                20
## 42  S8581257         5413      T40                  35                35
## 51  S8584709         5443      T39                  35                35
## 52  S8584835         5405      T34                  35                 0
## 55  S8585533         5423      T31                  35                20
## 64  S8636887         5441      T40                  50                50
## 65  S8640985         5427      T40                  50                50
##    Refs Kn.PhysMechs Kn.ExpApproach W.Structure Final.Grade
## 2    50           35             50          50       41.00
## 7     0           20             35          20       26.75
## 13   35           50             35          50       47.00
## 35   20           35             50          35       47.00
## 42   50           35             35          50       41.00
## 51  100           20             20          50       49.75
## 52    0           35             50          35       40.00
## 55   50           35             20          50       42.50
## 64   65           50             35          50       47.75
## 65   20           50             50          50       48.25
ave.all = subset(df, Disc.InterpFindings < 66 & Disc.IntegrateLit < 66 & Kn.PhysMechs < 66 & Kn.ExpApproach < 66 & W.Structure < 66 & Disc.InterpFindings > 49 & Disc.IntegrateLit > 49 & Kn.PhysMechs > 49 & Kn.ExpApproach > 49 & W.Structure > 49)
dim(ave.all)
## [1] 14 22
ave.all[,c(1:3, 12:17, 20)]
##    StudentID SubmissionID MarkerID Disc.InterpFindings Disc.IntegrateLit
## 1   S8473219         5439      T39                  65                50
## 16  S8567069         5419      T39                  65                50
## 17  S8569817         5461      T39                  65                65
## 18  S8572275         5444      T39                  65                65
## 19  S8572551         5401      T39                  65                50
## 26  S8576839         5415      T34                  65                65
## 30  S8577973         5434      T34                  65                65
## 36  S8579295         5436      T40                  65                65
## 39  S8579941         5407      T40                  65                65
## 41  S8580187         5402      T41                  50                65
## 47  S8583679         5446      T40                  65                50
## 49  S8583863         5430      T34                  65                65
## 59  S8587197         5403      T39                  65                65
## 65  S8640985         5427      T40                  50                50
##    Refs Kn.PhysMechs Kn.ExpApproach W.Structure Final.Grade
## 1   100           50             50          50       64.75
## 16  100           65             65          65       73.75
## 17  100           65             65          50       75.00
## 18  100           50             65          50       65.75
## 19  100           50             50          50       64.00
## 26   65           50             50          50       59.25
## 30   65           65             65          65       57.50
## 36   65           65             65          50       68.25
## 39   65           65             65          65       63.50
## 41  100           50             50          50       59.00
## 47   65           50             65          65       65.00
## 49   65           65             65          50       61.50
## 59  100           65             65          65       73.50
## 65   20           50             50          50       48.25

using for Hyab

df = AcP.2013

df$used = "unused"
df[2,23] = "used poor"
df[7,23] = "used poor"
df[35,23] = "used poor"

df[1,23] = "used ave"
df[16,23] = "used ave"
df[18,23] = "used ave"

df[11,23] = "used excel"
df[29,23] = "used excel"
df[45,23] = "used excel"
df[57,23] = "used excel"

AcP.2013 = df

checking new.used students for Mai

names(biom2011)
##  [1] "StudentID"             "SubmissionID.x"       
##  [3] "MarkerID.x"            "Publish.Time.x"       
##  [5] "Intro.x"               "Hypoth.x"             
##  [7] "Methods.x"             "Results.text.x"       
##  [9] "Fig.Tables.x"          "Legend.Title.x"       
## [11] "Disc.InterpFindings.x" "Disc.IntegrateLit.x"  
## [13] "Refs.x"                "Kn.PhysMechs.x"       
## [15] "Kn.ExpApproach.x"      "W.Structure.x"        
## [17] "W.LanguageJargon.x"    "W.GrammarSpelling.x"  
## [19] "Final.Grade.x"         "SubmissionID.y"       
## [21] "MarkerID.y"            "Publish.Time.y"       
## [23] "Intro.y"               "Hypoth.y"             
## [25] "Methods.y"             "Results.text.y"       
## [27] "Fig.Tables.y"          "Legend.Title.y"       
## [29] "Disc.InterpFindings.y" "Disc.IntegrateLit.y"  
## [31] "Refs.y"                "Kn.PhysMechs.y"       
## [33] "Kn.ExpApproach.y"      "W.Structure.y"        
## [35] "W.LanguageJargon.y"    "W.GrammarSpelling.y"  
## [37] "Final.Grade.y"         "R1arg"                
## [39] "R2arg"                 "Open.min"             
## [41] "Audio.min"             "used"                 
## [43] "category"
mai = which(biom2011[,42] == "new.used")
biom2011[mai,]
##     StudentID SubmissionID.x MarkerID.x Publish.Time.x Intro.x Hypoth.x
## 1    S8112187           3393        T28 29/04/13 14:29      65      100
## 36   S8468457           3390        T09 29/04/13 14:29      35      100
## 148  S8576659           3333        T26 29/04/13 14:31     100      100
## 240  S8584831           8716        T09 19/09/13 13:26      80      100
## 280  S8589129           3878        T28 29/04/13 14:29      20       80
##     Methods.x Results.text.x Fig.Tables.x Legend.Title.x
## 1          80             65          100            100
## 36         80             20          100            100
## 148       100            100          100             80
## 240       100            100           65            100
## 280        80             50           80            100
##     Disc.InterpFindings.x Disc.IntegrateLit.x Refs.x Kn.PhysMechs.x
## 1                     100                  80     80            100
## 36                     35                  35     20             35
## 148                   100                 100     80            100
## 240                    65                  65     80             50
## 280                    20                  20     20             35
##     Kn.ExpApproach.x W.Structure.x W.LanguageJargon.x W.GrammarSpelling.x
## 1                 80            80                 80                 100
## 36                20            80                 50                  50
## 148              100           100                 80                 100
## 240               65            50                 65                  80
## 280               35            50                 65                  80
##     Final.Grade.x SubmissionID.y MarkerID.y Publish.Time.y Intro.y
## 1           86.75           5036        T19  4/06/13 13:47      50
## 36          50.75           5381        T09  4/06/13 13:47      35
## 148         97.00           4971        T34  4/06/13 13:47      65
## 240         75.25          10621        T09 31/10/13 12:04      50
## 280         47.25           5022        T28  4/06/13 13:47      50
##     Hypoth.y Methods.y Results.text.y Fig.Tables.y Legend.Title.y
## 1         80        80             65           80            100
## 36       100       100            100          100            100
## 148       80        80             65           80             80
## 240      100       100            100          100             35
## 280      100        80             50           80             80
##     Disc.InterpFindings.y Disc.IntegrateLit.y Refs.y Kn.PhysMechs.y
## 1                      50                  35     80             50
## 36                     50                  35     65             35
## 148                    65                  65     80             80
## 240                     0                  20     50             35
## 280                    35                  35     35             35
##     Kn.ExpApproach.y W.Structure.y W.LanguageJargon.y W.GrammarSpelling.y
## 1                 50            65                 65                  65
## 36                50            80                 50                  80
## 148               65            80                 65                  65
## 240               65            50                 65                  65
## 280               35            50                 65                  65
##     Final.Grade.y  R1arg R2arg Open.min Audio.min     used category
## 1           61.50  81.67 45.00      192     181.1 new.used       ap
## 36          63.50  35.00 40.00      165    4530.6 new.used       pp
## 148         72.50 100.00 65.00       19     340.6 new.used       ea
## 240         54.50  70.00 23.33       32       0.0 new.used       ap
## 280         53.25  20.00 40.00     1453    1093.1 new.used       pp
biom2011[mai,c(1,42:43)]
##     StudentID     used category
## 1    S8112187 new.used       ap
## 36   S8468457 new.used       pp
## 148  S8576659 new.used       ea
## 240  S8584831 new.used       ap
## 280  S8589129 new.used       pp
get.decline
##     StudentID SubmissionID.x MarkerID.x SubmissionID.y MarkerID.y  R1arg
## 148  S8576659           3333        T26           4971        T34 100.00
## 1    S8112187           3393        T28           5036        T19  81.67
## 26   S8434511           3259        T31           4802        T31  75.00
## 240  S8584831           8716        T09          10621        T09  70.00
##     R2arg Open.min Audio.min category
## 148 65.00       19     340.6       ea
## 1   45.00      192     181.1       ap
## 26  50.00       26     601.4       ap
## 240 23.33       32       0.0       ap
miss = which(biom2011[,1] == "S8434511")
biom2011[miss,]
##    StudentID SubmissionID.x MarkerID.x Publish.Time.x Intro.x Hypoth.x
## 26  S8434511           3259        T31 29/04/13 14:26      65      100
##    Methods.x Results.text.x Fig.Tables.x Legend.Title.x
## 26        65             65           80            100
##    Disc.InterpFindings.x Disc.IntegrateLit.x Refs.x Kn.PhysMechs.x
## 26                    80                  80     80             80
##    Kn.ExpApproach.x W.Structure.x W.LanguageJargon.x W.GrammarSpelling.x
## 26               65           100                 80                  80
##    Final.Grade.x SubmissionID.y MarkerID.y Publish.Time.y Intro.y Hypoth.y
## 26          78.5           4802        T31  4/06/13 13:44      50       80
##    Methods.y Results.text.y Fig.Tables.y Legend.Title.y
## 26       100            100          100             65
##    Disc.InterpFindings.y Disc.IntegrateLit.y Refs.y Kn.PhysMechs.y
## 26                    50                  50     65             50
##    Kn.ExpApproach.y W.Structure.y W.LanguageJargon.y W.GrammarSpelling.y
## 26               80            80                 50                  50
##    Final.Grade.y R1arg R2arg Open.min Audio.min used category
## 26            66    75    50       26     601.4  dud       ap