Recipe 3: Two Factor, Multi-Level Analysis

This is an R Markdown document. Markdown is a simple formatting syntax for authoring web pages (click the MD toolbar button for help on Markdown). When you click the Knit HTML button a web page will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

Recipes for the Design of Experiments: Recipe Outline

as of August 28, 2014, superseding the version of August 24. Always use the most recent version.

Cars: Analysis of Horsepower

Max Winkelman

Rensselaer Polytechnic Institute

October 9 2014

Version 1

1. Setting

Cars

The data analyzed in this recipe is a csv file that contains various measured parameters from vehicles.

Install the ‘Cars.csv’ file

cars <- read.csv("~/RPI/Classes/Design of Experiments/R/Cars.csv", header=FALSE)
#reads in the data from the csv file 'Cars.csv' and assigns it to the dataframe 'cars'

Factors and Levels

Factor: Country of Origin and Model Year

Levels: Countries 1, 2, and 3 and Model Years 1970-1982

#Summary of Data (Columns are assigned variable names V1 to V6) 
head(cars)
##   V1 V2  V3 V4  V5 V6
## 1 70  1 130 18 307  8
## 2 70  1 165 15 350  8
## 3 70  1 150 18 318  8
## 4 70  1 150 16 304  8
## 5 70  1 140 17 302  8
## 6 70  1 198 15 429  8
#displays the first 6 sets of variables 
tail(cars)
##     V1 V2 V3 V4  V5 V6
## 392 82  1 90 36 135  4
## 393 82  1 86 27 151  4
## 394 82  2 52 27 140  4
## 395 82  1 84 44  97  4
## 396 82  1 79 32 135  4
## 397 82  1 82 28 120  4
#displays the last 6 sets of variables 
summary(cars)
##        V1           V2             V3            V4             V5     
##  Min.   :70   Min.   :1.00   Min.   : 46   Min.   : 9.0   Min.   :  4  
##  1st Qu.:73   1st Qu.:1.00   1st Qu.: 75   1st Qu.:17.5   1st Qu.:101  
##  Median :76   Median :1.00   Median : 92   Median :23.0   Median :146  
##  Mean   :76   Mean   :1.57   Mean   :104   Mean   :23.5   Mean   :193  
##  3rd Qu.:79   3rd Qu.:2.00   3rd Qu.:125   3rd Qu.:29.0   3rd Qu.:262  
##  Max.   :82   Max.   :3.00   Max.   :230   Max.   :46.6   Max.   :455  
##                              NA's   :1                                 
##        V6      
##  Min.   :3.00  
##  1st Qu.:4.00  
##  Median :4.00  
##  Mean   :5.45  
##  3rd Qu.:8.00  
##  Max.   :8.00  
## 
#displays a summary of the variables

Continuous variables:

The csv file, ‘Cars,’ was created for no specific experiment. Certain variables such as “Miles per Gallon,” “Engine Size (cube in),” “Model Year,” and “Horse Power” can be considered continuous variables. The “Country of Origin” and “Number of Cylinders” can be considered categorical variables.

Response variables:

Depending on the analysis preformed on the csv file, ‘Cars,’ several variables can be considered response variables. For this sample recipe, “Horse Power” will be considered as a response variable.

The Data: How is it organized and what does it look like?

The vehicle data of “Cars”" were observed from 1970 to 1982 for Countries “1,” “2,” and “3.” The csv file is for educational purposes and the methods of how that data were gathered are unknown. The data in “Cars” are organized into columns: “Miles per Gallon” (V4) designates the city gas mileage, “Engine Size (cube in)” (V5) represents the volume of the engine in cubic inches, “Model Year” (V1) shows the year that the vehicle was produced, “Horse Power” (V3) displays the horse power, “Country of Origin” (V2) reveals the country in which the vehicle was made, and “Number of Cylinders” (V6) shows the number of cylinders in each vehicle’s engine.

Randomization

The data from “Cars” is organized based on the variable name in each column; however, it can be assumed that the original data was gathered with proper randomization methods.

2. Experimental Design

How will the experiment be organized and conducted to test the hypothesis?

The vehicle data in “Cars” were not acquired with any specific experiment or hypothesis. This data is made publicly available for anyone to test their own hypothesis. For this case, the data from “Cars” will be analyzed to determine if the variation in a vehicle’s “Horse Power”" can be attributed to the variation in the “Year Model” (1970 to 1982) or the “Country of Origin” (Countries 1, 2, and 3). An analysis of variance test will be performed to determine the relationship between the sample horse power means. The null hypothesis of this experiment is that the horse power means across all vehicles from different model years and countries of origin are the same.

What is the rationale for this design?

The rationale behind the vehicle observations was to gather various parameters from different storms and make them readily available. With no specific aim in mind, the data can be analyzed be anyone wishing to test a hypothesis relating to the data.

Randomize: What is the Randomization Scheme?

Since this data was gathered with no specific intention, the randomization scheme, if any, is unknown. The data used in this example will be selected based solely on the year model and the country of origin of the vehicle. Horse power will be selected as the response variable.

Replicate: Are there replicates and/or repeated measures?

There are no replicates or repeated measures in this data set.

Block: Did you use blocking in the design?

The original data set, while organized into variables, was never arranged into experimental groups because no experiment was conducted. For this specific example, the vehicle data will be broken up into groups based on the year model and the country of origin of the vehicle

3. Statistical Analysis

Exploratory Data Analysis: Graphics and Descriptive Summary

#Assign the data types 
cars$V1=as.factor(cars$V1)
#makes the variable "V1" (Model Year) a factor
cars$V2=as.factor(cars$V2)
#makes the variable "V2" (Country of Origin) a factor

#Boxplot
boxplot(V3~V1,data=cars, xlab="Model Year", ylab="Horse Power")
title("Model Year Plots of Horse Power")

plot of chunk unnamed-chunk-3

#boxplot of the horse power data from each model year
boxplot(V3~V2,data=cars, xlab="Country of Origin", ylab="Horse Power")
title("Country of Origin Plots of Horse Power")

plot of chunk unnamed-chunk-3

#boxplot of the horse power data from each country of origin

The boxplots above display the distribution of the variation of horse power that can be attributed to the model year and the vehicle country of origin. No statistical inference can be made from this boxplot without performing a statistical test. By visual inspection, the organization of the first boxplot suggests that the variation of horse power can be attributed to the variation in model year. The second boxplot reveals that vehicles from countries 2 and 3 may have similar distributions of horse power.

ANOVA Testing

An analysis of variance (ANOVA) will be used to determine the statistical significance between the horse power means. The null hypothesis for all three ANOVA tests is that the mean horse power vectors of all samples are equal to each other. The first anova test will analyze the horse power variance as a result of the vehicle model year. The second anova test will analyze the horse power variance as a result of the country of origin. The third anova test will analyze the horse power variance as a result of the interaction between the model year and the country of origin. If the null hypothesis is rejected, the alternative hypothesis, which states that the mean vectors are not equal to each other, is accepted.

# ANOVA
#Model Year
model_year = aov(V3~V1,data=cars) 
anova(model_year)
## Analysis of Variance Table
## 
## Response: V3
##            Df Sum Sq Mean Sq F value Pr(>F)    
## V1         12 141853   11821    10.4 <2e-16 ***
## Residuals 383 433289    1131                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#performs an anova test

#Country of Origin
model_country = aov(V3~V2,data=cars) 
anova(model_country)
## Analysis of Variance Table
## 
## Response: V3
##            Df Sum Sq Mean Sq F value Pr(>F)    
## V2          2 136334   68167      61 <2e-16 ***
## Residuals 393 438808    1117                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#performs an anova test

#Model Year and Country of Origin
model_year_country = aov(V3~V1*V2,data=cars) 
anova(model_year_country)
## Analysis of Variance Table
## 
## Response: V3
##            Df Sum Sq Mean Sq F value Pr(>F)    
## V1         12 141853   11821   14.03 <2e-16 ***
## V2          2  98373   49186   58.39 <2e-16 ***
## V1:V2      24  34202    1425    1.69  0.023 *  
## Residuals 357 300714     842                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#performs an anova test

ANOVA Results: The anova test that analyzed the variation in horse power as a result of the variation in the model year produced a p-value of 2e-16. This indicates that there is a very small probability that the variation of horse power data can be attributed to solely randomization. It is highly likely that the model year during which a vehicle was made has an effect on the horse power mean. The anova test that analyzed the variation in horse power as a result of the variation in the country of origin also produced a p-value of 2e-16. This indicates that there is a very small probability that the variation of horse power data can be attributed to solely randomization. It is highly likely that the country of origin in which a vehicle was made has an effect on the horse power mean. The anova test that analyzed the variation in horse power as a result of the interaction of both the model year and the country of origin produced a p-value of 0.023. This indicates that there is a small probability that the variation of horse power data can be attributed to solely randomization. It is likely that the interaction of the model year and country origin have an effect on the horse power mean. However, without a post-hoc analysis, it is impossible to determine precisely which horse power means are significantly distinct from the others.

Post-Hoc Analysis

Tukey’s Honestly Significantly Difference is a multiple comparison procedure that is used after an ANOVA to determine which specific sample means are significantly different from the others. In this recipe, Tukey’s HSD is used to determine which model year and country of origin produced significantly different horse power means.

#Tukey's HSD
#Model Year
TukeyHSD(model_year, ordered = FALSE, conf.level = 0.95)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = V3 ~ V1, data = cars)
## 
## $V1
##            diff     lwr      upr  p adj
## 71-70 -39.17725 -69.423  -8.9315 0.0014
## 72-70 -26.03571 -56.005   3.9338 0.1650
## 73-70 -15.73929 -43.370  11.8912 0.7952
## 74-70 -51.91799 -82.164 -21.6723 0.0000
## 75-70 -45.14762 -74.613 -15.6818 0.0000
## 76-70 -45.09664 -73.713 -16.4798 0.0000
## 77-70 -41.14286 -71.112 -11.1733 0.0005
## 78-70 -46.51984 -74.775 -18.2643 0.0000
## 79-70 -45.00739 -74.717 -15.2974 0.0001
## 80-70 -69.35222 -99.062 -39.6422 0.0000
## 81-70 -65.42118 -95.131 -35.7112 0.0000
## 82-70 -64.47235 -93.708 -35.2369 0.0000
## 72-71  13.14153 -17.104  43.3873 0.9659
## 73-71  23.43796  -4.492  51.3679 0.2076
## 74-71 -12.74074 -43.260  17.7787 0.9751
## 75-71  -5.97037 -35.717  23.7763 1.0000
## 76-71  -5.91939 -34.825  22.9866 1.0000
## 77-71  -1.96561 -32.211  28.2801 1.0000
## 78-71  -7.34259 -35.891  21.2057 0.9997
## 79-71  -5.83014 -35.819  24.1585 1.0000
## 80-71 -30.17497 -60.164  -0.1863 0.0469
## 81-71 -26.24393 -56.233   3.7447 0.1567
## 82-71 -25.29510 -54.814   4.2234 0.1812
## 73-72  10.29643 -17.334  37.9270 0.9904
## 74-72 -25.88228 -56.128   4.3635 0.1829
## 75-72 -19.11190 -48.578  10.3539 0.6192
## 76-72 -19.06092 -47.678   9.5559 0.5767
## 77-72 -15.10714 -45.077  14.8624 0.9014
## 78-72 -20.48413 -48.740   7.7714 0.4343
## 79-72 -18.97167 -48.682  10.7384 0.6434
## 80-72 -43.31650 -73.027 -13.6065 0.0001
## 81-72 -39.38547 -69.096  -9.6754 0.0009
## 82-72 -38.43664 -67.672  -9.2012 0.0011
## 74-73 -36.17870 -64.109  -8.2488 0.0014
## 75-73 -29.40833 -56.492  -2.3250 0.0199
## 76-73 -29.35735 -55.514  -3.2002 0.0130
## 77-73 -25.40357 -53.034   2.2270 0.1075
## 78-73 -30.78056 -56.542  -5.0192 0.0054
## 79-73 -29.26810 -56.617  -1.9192 0.0237
## 80-73 -53.61293 -80.962 -26.2641 0.0000
## 81-73 -49.68190 -77.031 -22.3330 0.0000
## 82-73 -48.73306 -75.566 -21.9005 0.0000
## 75-74   6.77037 -22.976  36.5171 0.9999
## 76-74   6.82135 -22.085  35.7273 0.9999
## 77-74  10.77513 -19.471  41.0209 0.9935
## 78-74   5.39815 -23.150  33.9465 1.0000
## 79-74   6.91060 -23.078  36.8992 0.9999
## 80-74 -17.43423 -47.423  12.5544 0.7717
## 81-74 -13.50319 -43.492  16.4855 0.9553
## 82-74 -12.55436 -42.073  16.9642 0.9711
## 76-75   0.05098 -28.038  28.1398 1.0000
## 77-75   4.00476 -25.461  33.4706 1.0000
## 78-75  -1.37222 -29.093  26.3485 1.0000
## 79-75   0.14023 -29.062  29.3421 1.0000
## 80-75 -24.20460 -53.406   4.9972 0.2241
## 81-75 -20.27356 -49.475   8.9283 0.5077
## 82-75 -19.32473 -48.044   9.3941 0.5600
## 77-76   3.95378 -24.663  32.5706 1.0000
## 78-76  -1.42320 -28.240  25.3933 1.0000
## 79-76   0.08925 -28.256  28.4342 1.0000
## 80-76 -24.25558 -52.601   4.0894 0.1829
## 81-76 -20.32454 -48.669   8.0204 0.4529
## 82-76 -19.37571 -47.223   8.4714 0.5040
## 78-77  -5.37698 -33.633  22.8785 1.0000
## 79-77  -3.86453 -33.575  25.8455 1.0000
## 80-77 -28.20936 -57.919   1.5007 0.0818
## 81-77 -24.27833 -53.988   5.4317 0.2438
## 82-77 -23.32949 -52.565   5.9060 0.2785
## 79-78   1.51245 -26.468  29.4926 1.0000
## 80-78 -22.83238 -50.813   5.1478 0.2458
## 81-78 -18.90134 -46.881   9.0788 0.5535
## 82-78 -17.95251 -45.428   9.5232 0.6076
## 80-79 -24.34483 -53.793   5.1034 0.2276
## 81-79 -20.41379 -49.862   9.0345 0.5103
## 82-79 -19.46496 -48.434   9.5044 0.5624
## 81-80   3.93103 -25.517  33.3793 1.0000
## 82-80   4.87987 -24.090  33.8493 1.0000
## 82-81   0.94883 -28.021  29.9182 1.0000
#performs a THSD test for the model year

#Country of Origin
TukeyHSD(model_country, ordered = FALSE, conf.level = 0.95)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = V3 ~ V2, data = cars)
## 
## $V2
##        diff    lwr    upr  p adj
## 2-1 -38.069 -48.71 -27.42 0.0000
## 3-1 -38.505 -48.67 -28.34 0.0000
## 3-2  -0.436 -13.34  12.47 0.9965
#performs a THSD test for the country of origin

#Model Year and Country of Origin
TukeyHSD(model_year_country, ordered = FALSE, conf.level = 0.95)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = V3 ~ V1 * V2, data = cars)
## 
## $V1
##            diff      lwr      upr  p adj
## 71-70 -39.17725 -65.2880 -13.0665 0.0001
## 72-70 -26.03571 -51.9080  -0.1635 0.0469
## 73-70 -15.73929 -39.5923   8.1137 0.5912
## 74-70 -51.91799 -78.0287 -25.8073 0.0000
## 75-70 -45.14762 -70.5850 -19.7102 0.0000
## 76-70 -45.09664 -69.8011 -20.3922 0.0000
## 77-70 -41.14286 -67.0151 -15.2706 0.0000
## 78-70 -46.51984 -70.9124 -22.1273 0.0000
## 79-70 -45.00739 -70.6556 -19.3591 0.0000
## 80-70 -69.35222 -95.0005 -43.7040 0.0000
## 81-70 -65.42118 -91.0694 -39.7729 0.0000
## 82-70 -64.47235 -89.7109 -39.2338 0.0000
## 72-71  13.14153 -12.9692  39.2522 0.9020
## 73-71  23.43796  -0.6735  47.5494 0.0659
## 74-71 -12.74074 -39.0877  13.6063 0.9251
## 75-71  -5.97037 -31.6503  19.7095 0.9999
## 76-71  -5.91939 -30.8735  19.0347 0.9999
## 77-71  -1.96561 -28.0763  24.1451 1.0000
## 78-71  -7.34259 -31.9880  17.3028 0.9988
## 79-71  -5.83014 -31.7189  20.0586 0.9999
## 80-71 -30.17497 -56.0637  -4.2862 0.0078
## 81-71 -26.24393 -52.1327  -0.3552 0.0435
## 82-71 -25.29510 -50.7780   0.1878 0.0538
## 73-72  10.29643 -13.5566  34.1495 0.9674
## 74-72 -25.88228 -51.9930   0.2284 0.0546
## 75-72 -19.11190 -44.5493   6.3255 0.3737
## 76-72 -19.06092 -43.7654   5.6435 0.3304
## 77-72 -15.10714 -40.9794  10.7651 0.7658
## 78-72 -20.48413 -44.8767   3.9085 0.2064
## 79-72 -18.97167 -44.6199   6.6766 0.3997
## 80-72 -43.31650 -68.9647 -17.6683 0.0000
## 81-72 -39.38547 -65.0337 -13.7372 0.0000
## 82-72 -38.43664 -63.6752 -13.1981 0.0000
## 74-73 -36.17870 -60.2902 -12.0672 0.0001
## 75-73 -29.40833 -52.7890  -6.0277 0.0024
## 76-73 -29.35735 -51.9384  -6.7763 0.0013
## 77-73 -25.40357 -49.2566  -1.5505 0.0251
## 78-73 -30.78056 -53.0200  -8.5411 0.0004
## 79-73 -29.26810 -52.8780  -5.6582 0.0030
## 80-73 -53.61293 -77.2228 -30.0031 0.0000
## 81-73 -49.68190 -73.2918 -26.0720 0.0000
## 82-73 -48.73306 -71.8972 -25.5689 0.0000
## 75-74   6.77037 -18.9095  32.4503 0.9996
## 76-74   6.82135 -18.1327  31.7754 0.9995
## 77-74  10.77513 -15.3356  36.8858 0.9772
## 78-74   5.39815 -19.2472  30.0435 0.9999
## 79-74   6.91060 -18.9782  32.7994 0.9996
## 80-74 -17.43423 -43.3230   8.4545 0.5580
## 81-74 -13.50319 -39.3920  12.3856 0.8770
## 82-74 -12.55436 -38.0373  12.9286 0.9150
## 76-75   0.05098 -24.1977  24.2997 1.0000
## 77-75   4.00476 -21.4326  29.4422 1.0000
## 78-75  -1.37222 -25.3031  22.5586 1.0000
## 79-75   0.14023 -25.0693  25.3497 1.0000
## 80-75 -24.20460 -49.4141   1.0049 0.0739
## 81-75 -20.27356 -45.4831   4.9360 0.2666
## 82-75 -19.32473 -44.1173   5.4678 0.3143
## 77-76   3.95378 -20.7507  28.6583 1.0000
## 78-76  -1.42320 -24.5735  21.7271 1.0000
## 79-76   0.08925 -24.3805  24.5590 1.0000
## 80-76 -24.25558 -48.7254   0.2142 0.0546
## 81-76 -20.32454 -44.7943   4.1452 0.2209
## 82-76 -19.37571 -43.4157   4.6643 0.2634
## 78-77  -5.37698 -29.7696  19.0156 0.9999
## 79-77  -3.86453 -29.5128  21.7837 1.0000
## 80-77 -28.20936 -53.8576  -2.5611 0.0170
## 81-77 -24.27833 -49.9266   1.3699 0.0840
## 82-77 -23.32949 -48.5680   1.9091 0.1028
## 79-78   1.51245 -22.6424  25.6673 1.0000
## 80-78 -22.83238 -46.9872   1.3225 0.0850
## 81-78 -18.90134 -43.0562   5.2535 0.3082
## 82-78 -17.95251 -41.6719   5.7669 0.3616
## 80-79 -24.34483 -49.7671   1.0774 0.0757
## 81-79 -20.41379 -45.8361   5.0085 0.2688
## 82-79 -19.46496 -44.4738   5.5439 0.3166
## 81-80   3.93103 -21.4912  29.3533 1.0000
## 82-80   4.87987 -20.1290  29.8887 1.0000
## 82-81   0.94883 -24.0600  25.9577 1.0000
## 
## $V2
##        diff     lwr    upr  p adj
## 2-1 -35.061 -44.310 -25.81 0.0000
## 3-1 -27.440 -36.269 -18.61 0.0000
## 3-2   7.621  -3.591  18.83 0.2471
## 
## $`V1:V2`
##                 diff      lwr       upr  p adj
## 71:1-70:1 -4.587e+01  -81.802  -9.94241 0.0006
## 72:1-70:1 -2.694e+01  -63.386   9.51347 0.6021
## 73:1-70:1 -1.909e+01  -51.609  13.42166 0.9536
## 74:1-70:1 -5.465e+01  -93.010 -16.28513 0.0000
## 75:1-70:1 -5.701e+01  -92.469 -21.55923 0.0000
## 76:1-70:1 -5.521e+01  -89.834 -20.59452 0.0000
## 77:1-70:1 -4.733e+01  -83.775 -10.87542 0.0004
## 78:1-70:1 -5.844e+01  -93.061 -23.82180 0.0000
## 79:1-70:1 -5.628e+01  -90.530 -22.02926 0.0000
## 80:1-70:1 -7.957e+01 -129.097 -30.04566 0.0000
## 81:1-70:1 -8.118e+01 -121.223 -41.12892 0.0000
## 82:1-70:1 -7.861e+01 -114.069 -43.15923 0.0000
## 70:2-70:1 -7.951e+01 -135.982 -23.04622 0.0000
## 71:2-70:1 -9.171e+01 -153.621 -29.80708 0.0000
## 72:2-70:1 -8.611e+01 -142.582 -29.64622 0.0000
## 73:2-70:1 -8.386e+01 -133.383 -34.33138 0.0000
## 74:2-70:1 -9.155e+01 -144.078 -39.01761 0.0000
## 75:2-70:1 -7.621e+01 -128.744 -23.68428 0.0000
## 76:2-70:1 -7.809e+01 -125.236 -30.94216 0.0000
## 77:2-70:1 -8.471e+01 -146.621 -22.80708 0.0001
## 78:2-70:1 -6.655e+01 -119.078 -14.01761 0.0007
## 79:2-70:1 -9.371e+01 -155.621 -31.80708 0.0000
## 80:2-70:1 -9.894e+01 -144.147 -53.72588 0.0000
## 81:2-70:1 -8.971e+01 -151.621 -27.80708 0.0000
## 82:2-70:1 -1.027e+02 -186.689 -18.73926 0.0016
## 70:3-70:1 -7.421e+01 -158.189   9.76074 0.1941
## 71:3-70:1 -8.646e+01 -148.371 -24.55708 0.0001
## 72:3-70:1 -7.191e+01 -128.382 -15.44622 0.0007
## 73:3-70:1 -6.721e+01 -129.121  -5.30708 0.0150
## 74:3-70:1 -9.321e+01 -145.744 -40.68428 0.0000
## 75:3-70:1 -8.546e+01 -147.371 -23.55708 0.0001
## 76:3-70:1 -8.921e+01 -151.121 -27.30708 0.0000
## 77:3-70:1 -8.455e+01 -137.078 -32.01761 0.0000
## 78:3-70:1 -8.646e+01 -133.611 -39.31716 0.0000
## 79:3-70:1 -1.007e+02 -184.689 -16.73926 0.0024
## 80:3-70:1 -8.687e+01 -126.915 -46.82122 0.0000
## 81:3-70:1 -8.738e+01 -128.446 -46.31636 0.0000
## 82:3-70:1 -9.171e+01 -136.925 -46.50365 0.0000
## 72:1-71:1  1.894e+01  -18.389  56.26057 0.9948
## 73:1-71:1  2.678e+01   -6.715  60.27171 0.4076
## 74:1-71:1 -8.775e+00  -47.970  30.41931 1.0000
## 75:1-71:1 -1.114e+01  -47.496  25.21182 1.0000
## 76:1-71:1 -9.342e+00  -44.882  26.19767 1.0000
## 77:1-71:1 -1.453e+00  -38.778  35.87168 1.0000
## 78:1-71:1 -1.257e+01  -48.109  22.97039 1.0000
## 79:1-71:1 -1.041e+01  -45.587  24.77259 1.0000
## 80:1-71:1 -3.370e+01  -83.872  16.47394 0.8032
## 81:1-71:1 -3.530e+01  -76.148   5.54121 0.2348
## 82:1-71:1 -3.274e+01  -69.096   3.61182 0.1630
## 70:2-71:1 -3.364e+01  -90.679  23.39463 0.9509
## 71:2-71:1 -4.584e+01 -108.268  16.58425 0.6172
## 72:2-71:1 -4.024e+01  -97.279  16.79463 0.7080
## 73:2-71:1 -3.798e+01  -88.158  12.18823 0.5429
## 74:2-71:1 -4.568e+01  -98.816   7.46540 0.2458
## 75:2-71:1 -3.034e+01  -83.483  22.79874 0.9680
## 76:2-71:1 -3.222e+01  -80.044  15.60965 0.7982
## 77:2-71:1 -3.884e+01 -101.268  23.58425 0.9075
## 78:2-71:1 -2.068e+01  -73.816  32.46540 1.0000
## 79:2-71:1 -4.784e+01 -110.268  14.58425 0.5125
## 80:2-71:1 -5.306e+01  -98.983  -7.14539 0.0050
## 81:2-71:1 -4.384e+01 -106.268  18.58425 0.7177
## 82:2-71:1 -5.684e+01 -141.201  27.51637 0.7977
## 70:3-71:1 -2.834e+01 -112.701  56.01637 1.0000
## 71:3-71:1 -4.059e+01 -103.018  21.83425 0.8540
## 72:3-71:1 -2.604e+01  -83.079  30.99463 0.9993
## 73:3-71:1 -2.134e+01  -83.768  41.08425 1.0000
## 74:3-71:1 -4.734e+01 -100.483   5.79874 0.1805
## 75:3-71:1 -3.959e+01 -102.018  22.83425 0.8865
## 76:3-71:1 -4.334e+01 -105.768  19.08425 0.7413
## 77:3-71:1 -3.868e+01  -91.816  14.46540 0.6384
## 78:3-71:1 -4.059e+01  -88.419   7.23465 0.2714
## 79:3-71:1 -5.484e+01 -139.201  29.51637 0.8543
## 80:3-71:1 -4.100e+01  -81.841  -0.15110 0.0476
## 81:3-71:1 -4.151e+01  -83.352   0.33437 0.0555
## 82:3-71:1 -4.584e+01  -91.761   0.07683 0.0511
## 73:1-72:1  7.843e+00  -26.208  41.89349 1.0000
## 74:1-72:1 -2.771e+01  -67.383  11.96106 0.7290
## 75:1-72:1 -3.008e+01  -66.946   6.79038 0.3594
## 76:1-72:1 -2.828e+01  -64.343   7.78783 0.4557
## 77:1-72:1 -2.039e+01  -58.215  17.43704 0.9861
## 78:1-72:1 -3.151e+01  -67.571   4.56056 0.2148
## 79:1-72:1 -2.934e+01  -65.054   6.36805 0.3427
## 80:1-72:1 -5.263e+01 -103.182  -2.08790 0.0285
## 81:1-72:1 -5.424e+01  -95.543 -12.93611 0.0003
## 82:1-72:1 -5.168e+01  -88.546 -14.80962 0.0001
## 70:2-72:1 -5.258e+01 -109.944   4.78808 0.1373
## 71:2-72:1 -6.478e+01 -127.505  -2.05057 0.0322
## 72:2-72:1 -5.918e+01 -116.544  -1.81192 0.0327
## 73:2-72:1 -5.692e+01 -107.468  -6.37361 0.0081
## 74:2-72:1 -6.461e+01 -118.105 -11.11717 0.0021
## 75:2-72:1 -4.928e+01 -102.772   4.21616 0.1304
## 76:2-72:1 -5.115e+01  -99.372  -2.93399 0.0216
## 77:2-72:1 -5.778e+01 -120.505   4.94943 0.1305
## 78:2-72:1 -3.961e+01  -93.105  13.88283 0.5973
## 79:2-72:1 -6.678e+01 -129.505  -4.05057 0.0205
## 80:2-72:1 -7.200e+01 -118.327 -25.67289 0.0000
## 81:2-72:1 -6.278e+01 -125.505  -0.05057 0.0495
## 82:2-72:1 -7.578e+01 -160.359   8.80357 0.1713
## 70:3-72:1 -4.728e+01 -131.859  37.30357 0.9762
## 71:3-72:1 -5.953e+01 -122.255   3.19943 0.0947
## 72:3-72:1 -4.498e+01 -102.344  12.38808 0.4557
## 73:3-72:1 -4.028e+01 -103.005  22.44943 0.8711
## 74:3-72:1 -6.628e+01 -119.772 -12.78384 0.0012
## 75:3-72:1 -5.853e+01 -121.255   4.19943 0.1140
## 76:3-72:1 -6.228e+01 -125.005   0.44943 0.0549
## 77:3-72:1 -5.761e+01 -111.105  -4.11717 0.0171
## 78:3-72:1 -5.953e+01 -107.747 -11.30899 0.0013
## 79:3-72:1 -7.378e+01 -158.359  10.80357 0.2175
## 80:3-72:1 -5.993e+01 -101.235 -18.62842 0.0000
## 81:3-72:1 -6.044e+01 -102.735 -18.15377 0.0000
## 82:3-72:1 -6.478e+01 -111.105 -18.45067 0.0001
## 74:1-73:1 -3.555e+01  -71.644   0.53645 0.0606
## 75:1-73:1 -3.792e+01  -70.904  -4.93733 0.0055
## 76:1-73:1 -3.612e+01  -68.204  -4.03690 0.0081
## 77:1-73:1 -2.823e+01  -62.282   5.81878 0.3222
## 78:1-73:1 -3.935e+01  -71.432  -7.26418 0.0015
## 79:1-73:1 -3.719e+01  -68.871  -5.50121 0.0037
## 80:1-73:1 -6.048e+01 -108.265 -12.69036 0.0008
## 81:1-73:1 -6.208e+01  -99.958 -24.20617 0.0000
## 82:1-73:1 -5.952e+01  -92.504 -26.53733 0.0000
## 70:2-73:1 -6.042e+01 -115.371  -5.47086 0.0121
## 71:2-73:1 -7.262e+01 -133.146 -12.09513 0.0024
## 72:2-73:1 -6.702e+01 -121.971 -12.07086 0.0017
## 73:2-73:1 -6.476e+01 -112.551 -16.97607 0.0001
## 74:2-73:1 -7.245e+01 -123.348 -21.55959 0.0000
## 75:2-73:1 -5.712e+01 -108.015  -6.22626 0.0085
## 76:2-73:1 -5.900e+01 -104.313 -13.67800 0.0004
## 77:2-73:1 -6.562e+01 -126.146  -5.09513 0.0153
## 78:2-73:1 -4.745e+01  -98.348   3.44041 0.1149
## 79:2-73:1 -7.462e+01 -135.146 -14.09513 0.0014
## 80:2-73:1 -7.984e+01 -123.142 -36.54346 0.0000
## 81:2-73:1 -7.062e+01 -131.146 -10.09513 0.0042
## 82:2-73:1 -8.362e+01 -166.582  -0.65898 0.0450
## 70:3-73:1 -5.512e+01 -138.082  27.84102 0.8213
## 71:3-73:1 -6.737e+01 -127.896  -6.84513 0.0099
## 72:3-73:1 -5.282e+01 -107.771   2.12914 0.0817
## 73:3-73:1 -4.812e+01 -108.646  12.40487 0.4213
## 74:3-73:1 -7.412e+01 -125.015 -23.22626 0.0000
## 75:3-73:1 -6.637e+01 -126.896  -5.84513 0.0127
## 76:3-73:1 -7.012e+01 -130.646  -9.59513 0.0048
## 77:3-73:1 -6.545e+01 -116.348 -14.55959 0.0005
## 78:3-73:1 -6.737e+01 -112.688 -22.05300 0.0000
## 79:3-73:1 -8.162e+01 -164.582   1.34102 0.0616
## 80:3-73:1 -6.777e+01 -105.651 -29.89847 0.0000
## 81:3-73:1 -6.829e+01 -107.238 -29.33685 0.0000
## 82:3-73:1 -7.262e+01 -115.920 -29.32124 0.0000
## 75:1-74:1 -2.367e+00  -41.127  36.39338 1.0000
## 76:1-74:1 -5.667e-01  -38.564  37.43081 1.0000
## 77:1-74:1  7.322e+00  -32.350  46.99439 1.0000
## 78:1-74:1 -3.794e+00  -41.791  34.20354 1.0000
## 79:1-74:1 -1.632e+00  -39.293  36.02922 1.0000
## 80:1-74:1 -2.492e+01  -76.867  27.01925 0.9981
## 81:1-74:1 -2.653e+01  -69.529  16.47220 0.9159
## 82:1-74:1 -2.397e+01  -62.727  14.79338 0.9137
## 70:2-74:1 -2.487e+01  -83.466  33.73301 0.9998
## 71:2-74:1 -3.707e+01 -100.924  26.79085 0.9600
## 72:2-74:1 -3.147e+01  -90.066  27.13301 0.9869
## 73:2-74:1 -2.921e+01  -81.153  22.73354 0.9741
## 74:2-74:1 -3.690e+01  -91.715  17.91498 0.7994
## 75:2-74:1 -2.157e+01  -76.382  33.24831 1.0000
## 76:2-74:1 -2.344e+01  -73.122  26.23863 0.9986
## 77:2-74:1 -3.007e+01  -93.924  33.79085 0.9987
## 78:2-74:1 -1.190e+01  -66.715  42.91498 1.0000
## 79:2-74:1 -3.907e+01 -102.924  24.79085 0.9236
## 80:2-74:1 -4.429e+01  -92.135   3.55755 0.1240
## 81:2-74:1 -3.507e+01  -98.924  28.79085 0.9816
## 82:2-74:1 -4.807e+01 -133.490  37.35631 0.9738
## 70:3-74:1 -1.957e+01 -104.990  65.85631 1.0000
## 71:3-74:1 -3.182e+01  -95.674  32.04085 0.9962
## 72:3-74:1 -1.727e+01  -75.866  41.33301 1.0000
## 73:3-74:1 -1.257e+01  -76.424  51.29085 1.0000
## 74:3-74:1 -3.857e+01  -93.382  16.24831 0.7139
## 75:3-74:1 -3.082e+01  -94.674  33.04085 0.9979
## 76:3-74:1 -3.457e+01  -98.424  29.29085 0.9852
## 77:3-74:1 -2.990e+01  -84.715  24.91498 0.9834
## 78:3-74:1 -3.182e+01  -81.497  17.86363 0.8745
## 79:3-74:1 -4.607e+01 -131.490  39.35631 0.9860
## 80:3-74:1 -3.222e+01  -75.221  10.77989 0.5684
## 81:3-74:1 -3.273e+01  -76.683  11.21642 0.5832
## 82:3-74:1 -3.707e+01  -84.913  10.77977 0.4856
## 76:1-75:1  1.800e+00  -33.260  36.85978 1.0000
## 77:1-75:1  9.689e+00  -27.179  46.55704 1.0000
## 78:1-75:1 -1.427e+00  -36.487  33.63251 1.0000
## 79:1-75:1  7.348e-01  -33.960  35.42972 1.0000
## 80:1-75:1 -2.256e+01  -72.391  27.27720 0.9994
## 81:1-75:1 -2.416e+01  -64.589  16.26636 0.9421
## 82:1-75:1 -2.160e+01  -57.485  14.28483 0.9369
## 70:2-75:1 -2.250e+01  -79.239  34.23889 1.0000
## 71:2-75:1 -3.470e+01  -96.854  27.45434 0.9766
## 72:2-75:1 -2.910e+01  -85.839  27.63889 0.9938
## 73:2-75:1 -2.684e+01  -76.677  22.99148 0.9863
## 74:2-75:1 -3.453e+01  -87.354  18.28770 0.8462
## 75:2-75:1 -1.920e+01  -72.021  33.62103 1.0000
## 76:2-75:1 -2.107e+01  -68.546  26.39616 0.9996
## 77:2-75:1 -2.770e+01  -89.854  34.45434 0.9996
## 78:2-75:1 -9.533e+00  -62.354  43.28770 1.0000
## 79:2-75:1 -3.670e+01  -98.854  25.45434 0.9502
## 80:2-75:1 -4.192e+01  -87.471   3.62623 0.1315
## 81:2-75:1 -3.270e+01  -94.854  29.45434 0.9905
## 82:2-75:1 -4.570e+01 -129.857  38.45738 0.9844
## 70:3-75:1 -1.720e+01 -101.357  66.95738 1.0000
## 71:3-75:1 -2.945e+01  -91.604  32.70434 0.9985
## 72:3-75:1 -1.490e+01  -71.639  41.83889 1.0000
## 73:3-75:1 -1.020e+01  -72.354  51.95434 1.0000
## 74:3-75:1 -3.620e+01  -89.021  16.62103 0.7668
## 75:3-75:1 -2.845e+01  -90.604  33.70434 0.9992
## 76:3-75:1 -3.220e+01  -94.354  29.95434 0.9926
## 77:3-75:1 -2.753e+01  -80.354  25.28770 0.9918
## 78:3-75:1 -2.945e+01  -76.921  18.02116 0.9105
## 79:3-75:1 -4.370e+01 -127.857  40.45738 0.9923
## 80:3-75:1 -2.985e+01  -70.282  10.57405 0.6039
## 81:3-75:1 -3.037e+01  -71.803  11.06956 0.6220
## 82:3-75:1 -3.470e+01  -80.248  10.84845 0.5274
## 77:1-76:1  7.889e+00  -28.177  43.95450 1.0000
## 78:1-76:1 -3.227e+00  -37.442  30.98757 1.0000
## 79:1-76:1 -1.065e+00  -34.906  32.77568 1.0000
## 80:1-76:1 -2.436e+01  -73.601  24.88642 0.9967
## 81:1-76:1 -2.596e+01  -65.659  13.73584 0.8458
## 82:1-76:1 -2.340e+01  -58.460  11.65978 0.8139
## 70:2-76:1 -2.430e+01  -80.521  31.92072 0.9998
## 71:2-76:1 -3.650e+01  -98.182  25.18168 0.9488
## 72:2-76:1 -3.090e+01  -87.121  25.32072 0.9814
## 73:2-76:1 -2.864e+01  -77.886  20.60071 0.9590
## 74:2-76:1 -3.633e+01  -88.597  15.93070 0.7387
## 75:2-76:1 -2.100e+01  -73.264  31.26403 1.0000
## 76:2-76:1 -2.288e+01  -69.726  23.97560 0.9974
## 77:2-76:1 -2.950e+01  -91.182  32.18168 0.9982
## 78:2-76:1 -1.133e+01  -63.597  40.93070 1.0000
## 79:2-76:1 -3.850e+01 -100.182  23.18168 0.9043
## 80:2-76:1 -4.372e+01  -88.624   1.17910 0.0700
## 81:2-76:1 -3.450e+01  -96.182  27.18168 0.9760
## 82:2-76:1 -4.750e+01 -131.309  36.30890 0.9711
## 70:3-76:1 -1.900e+01 -102.809  64.80890 1.0000
## 71:3-76:1 -3.125e+01  -92.932  30.43168 0.9949
## 72:3-76:1 -1.670e+01  -72.921  39.52072 1.0000
## 73:3-76:1 -1.200e+01  -73.682  49.68168 1.0000
## 74:3-76:1 -3.800e+01  -90.264  14.26403 0.6406
## 75:3-76:1 -3.025e+01  -91.932  31.43168 0.9971
## 76:3-76:1 -3.400e+01  -95.682  27.68168 0.9805
## 77:3-76:1 -2.933e+01  -81.597  22.93070 0.9748
## 78:3-76:1 -3.125e+01  -78.101  15.60060 0.8150
## 79:3-76:1 -4.550e+01 -129.309  38.30890 0.9845
## 80:3-76:1 -3.165e+01  -71.351   8.04354 0.4142
## 81:3-76:1 -3.217e+01  -72.890   8.55714 0.4374
## 82:3-76:1 -3.650e+01  -81.401   8.40132 0.3678
## 78:1-77:1 -1.112e+01  -47.182  24.94945 1.0000
## 79:1-77:1 -8.954e+00  -44.665  26.75694 1.0000
## 80:1-77:1 -3.225e+01  -82.793  18.30099 0.8794
## 81:1-77:1 -3.385e+01  -75.154   7.45278 0.3487
## 82:1-77:1 -3.129e+01  -68.157   5.57927 0.2716
## 70:2-77:1 -3.219e+01  -89.555  25.17697 0.9748
## 71:2-77:1 -4.439e+01 -107.116  18.33832 0.7016
## 72:2-77:1 -3.879e+01  -96.155  18.57697 0.7915
## 73:2-77:1 -3.653e+01  -87.079  14.01528 0.6545
## 74:2-77:1 -4.422e+01  -97.716   9.27172 0.3288
## 75:2-77:1 -2.889e+01  -82.383  24.60505 0.9857
## 76:2-77:1 -3.076e+01  -78.983  17.45490 0.8792
## 77:2-77:1 -3.739e+01 -100.116  25.33832 0.9440
## 78:2-77:1 -1.922e+01  -72.716  34.27172 1.0000
## 79:2-77:1 -4.639e+01 -109.116  16.33832 0.6003
## 80:2-77:1 -5.161e+01  -97.938  -5.28400 0.0097
## 81:2-77:1 -4.239e+01 -105.116  20.33832 0.7926
## 82:2-77:1 -5.539e+01 -139.970  29.19246 0.8438
## 70:3-77:1 -2.689e+01 -111.470  57.69246 1.0000
## 71:3-77:1 -3.914e+01 -101.866  23.58832 0.9046
## 72:3-77:1 -2.459e+01  -81.955  32.77697 0.9998
## 73:3-77:1 -1.989e+01  -82.616  42.83832 1.0000
## 74:3-77:1 -4.589e+01  -99.383   7.60505 0.2497
## 75:3-77:1 -3.814e+01 -100.866  24.58832 0.9289
## 76:3-77:1 -4.189e+01 -104.616  20.83832 0.8130
## 77:3-77:1 -3.722e+01  -90.716  16.27172 0.7369
## 78:3-77:1 -3.914e+01  -87.358   9.07990 0.3713
## 79:3-77:1 -5.339e+01 -137.970  31.19246 0.8920
## 80:3-77:1 -3.954e+01  -80.846   1.76047 0.0856
## 81:3-77:1 -4.006e+01  -82.346   2.23512 0.0967
## 82:3-77:1 -4.439e+01  -90.716   1.93822 0.0848
## 79:1-78:1  2.162e+00  -31.679  36.00295 1.0000
## 80:1-78:1 -2.113e+01  -70.373  28.11370 0.9998
## 81:1-78:1 -2.273e+01  -62.432  16.96312 0.9666
## 82:1-78:1 -2.017e+01  -55.233  14.88705 0.9644
## 70:2-78:1 -2.107e+01  -77.293  35.14799 1.0000
## 71:2-78:1 -3.327e+01  -94.954  28.40895 0.9859
## 72:2-78:1 -2.767e+01  -83.893  28.54799 0.9970
## 73:2-78:1 -2.542e+01  -74.659  23.82798 0.9931
## 74:2-78:1 -3.311e+01  -85.370  19.15797 0.8879
## 75:2-78:1 -1.777e+01  -70.037  34.49130 1.0000
## 76:2-78:1 -1.965e+01  -66.498  27.20287 0.9999
## 77:2-78:1 -2.627e+01  -87.954  35.40895 0.9998
## 78:2-78:1 -8.106e+00  -60.370  44.15797 1.0000
## 79:2-78:1 -3.527e+01  -96.954  26.40895 0.9673
## 80:2-78:1 -4.049e+01  -85.396   4.40637 0.1609
## 81:2-78:1 -3.127e+01  -92.954  30.40895 0.9949
## 82:2-78:1 -4.427e+01 -128.082  39.53617 0.9899
## 70:3-78:1 -1.577e+01  -99.582  68.03617 1.0000
## 71:3-78:1 -2.802e+01  -89.704  33.65895 0.9993
## 72:3-78:1 -1.347e+01  -69.693  42.74799 1.0000
## 73:3-78:1 -8.773e+00  -70.454  52.90895 1.0000
## 74:3-78:1 -3.477e+01  -87.037  17.49130 0.8191
## 75:3-78:1 -2.702e+01  -88.704  34.65895 0.9997
## 76:3-78:1 -3.077e+01  -92.454  30.90895 0.9961
## 77:3-78:1 -2.611e+01  -78.370  26.15797 0.9960
## 78:3-78:1 -2.802e+01  -74.873  18.82787 0.9416
## 79:3-78:1 -4.227e+01 -126.082  41.53617 0.9953
## 80:3-78:1 -2.843e+01  -68.124  11.27081 0.6755
## 81:3-78:1 -2.894e+01  -69.663  11.78441 0.6925
## 82:3-78:1 -3.327e+01  -78.174  11.62859 0.5955
## 80:1-79:1 -2.329e+01  -72.276  25.69256 0.9984
## 81:1-79:1 -2.490e+01  -64.272  14.47922 0.8901
## 82:1-79:1 -2.233e+01  -57.030  12.36016 0.8678
## 70:2-79:1 -2.323e+01  -79.229  32.75915 0.9999
## 71:2-79:1 -3.543e+01  -96.910  26.04026 0.9636
## 72:2-79:1 -2.983e+01  -85.829  26.15915 0.9884
## 73:2-79:1 -2.758e+01  -76.562  21.40684 0.9736
## 74:2-79:1 -3.527e+01  -87.288  16.75188 0.7868
## 75:2-79:1 -1.993e+01  -71.955  32.08521 1.0000
## 76:2-79:1 -2.181e+01  -68.388  24.76843 0.9988
## 77:2-79:1 -2.843e+01  -89.910  33.04026 0.9991
## 78:2-79:1 -1.027e+01  -62.288  41.75188 1.0000
## 79:2-79:1 -3.743e+01  -98.910  24.04026 0.9276
## 80:2-79:1 -4.266e+01  -87.274   1.96003 0.0870
## 81:2-79:1 -3.343e+01  -94.910  28.04026 0.9841
## 82:2-79:1 -4.643e+01 -130.092  37.22215 0.9785
## 70:3-79:1 -1.793e+01 -101.592  65.72215 1.0000
## 71:3-79:1 -3.018e+01  -91.660  31.29026 0.9971
## 72:3-79:1 -1.563e+01  -71.629  40.35915 1.0000
## 73:3-79:1 -1.093e+01  -72.410  50.54026 1.0000
## 74:3-79:1 -3.693e+01  -88.955  15.08521 0.6943
## 75:3-79:1 -2.918e+01  -90.660  32.29026 0.9984
## 76:3-79:1 -3.293e+01  -94.410  28.54026 0.9874
## 77:3-79:1 -2.827e+01  -80.288  23.75188 0.9843
## 78:3-79:1 -3.018e+01  -76.763  16.39343 0.8588
## 79:3-79:1 -4.443e+01 -128.092  39.22215 0.9889
## 80:3-79:1 -3.059e+01  -69.964   8.78691 0.4787
## 81:3-79:1 -3.110e+01  -71.512   9.30869 0.5019
## 82:3-79:1 -3.543e+01  -80.052   9.18225 0.4239
## 81:1-80:1 -1.604e+00  -54.804  51.59481 1.0000
## 82:1-80:1  9.571e-01  -48.877  50.79148 1.0000
## 70:2-80:1  5.714e-02  -66.389  66.50293 1.0000
## 71:2-80:1 -1.214e+01  -83.269  58.98311 1.0000
## 72:2-80:1 -6.543e+00  -72.989  59.90293 1.0000
## 73:2-80:1 -4.286e+00  -64.942  56.37071 1.0000
## 74:2-80:1 -1.198e+01  -75.109  51.15702 1.0000
## 75:2-80:1  3.357e+00  -59.776  66.49035 1.0000
## 76:2-80:1  1.482e+00  -57.248  60.21248 1.0000
## 77:2-80:1 -5.143e+00  -76.269  65.98311 1.0000
## 78:2-80:1  1.302e+01  -50.109  76.15702 1.0000
## 79:2-80:1 -1.414e+01  -85.269  56.98311 1.0000
## 80:2-80:1 -1.937e+01  -76.553  37.82235 1.0000
## 81:2-80:1 -1.014e+01  -81.269  60.98311 1.0000
## 82:2-80:1 -2.314e+01 -114.127  67.84178 1.0000
## 70:3-80:1  5.357e+00  -85.627  96.34178 1.0000
## 71:3-80:1 -6.893e+00  -78.019  64.23311 1.0000
## 72:3-80:1  7.657e+00  -58.789  74.10293 1.0000
## 73:3-80:1  1.236e+01  -58.769  83.48311 1.0000
## 74:3-80:1 -1.364e+01  -76.776  49.49035 1.0000
## 75:3-80:1 -5.893e+00  -77.019  65.23311 1.0000
## 76:3-80:1 -9.643e+00  -80.769  61.48311 1.0000
## 77:3-80:1 -4.976e+00  -68.109  58.15702 1.0000
## 78:3-80:1 -6.893e+00  -65.623  51.83748 1.0000
## 79:3-80:1 -2.114e+01 -112.127  69.84178 1.0000
## 80:3-80:1 -7.297e+00  -60.496  45.90250 1.0000
## 81:3-80:1 -7.810e+00  -61.779  46.15993 1.0000
## 82:3-80:1 -1.214e+01  -69.330  45.04457 1.0000
## 82:1-81:1  2.562e+00  -37.866  42.98944 1.0000
## 70:2-81:1  1.662e+00  -58.054  61.37750 1.0000
## 71:2-81:1 -1.054e+01  -75.422  54.34494 1.0000
## 72:2-81:1 -4.938e+00  -64.654  54.77750 1.0000
## 73:2-81:1 -2.681e+00  -55.881  50.51789 1.0000
## 74:2-81:1 -1.037e+01  -66.379  45.63495 1.0000
## 75:2-81:1  4.962e+00  -51.045  60.96829 1.0000
## 76:2-81:1  3.087e+00  -47.906  54.07875 1.0000
## 77:2-81:1 -3.538e+00  -68.422  61.34494 1.0000
## 78:2-81:1  1.463e+01  -41.379  70.63495 1.0000
## 79:2-81:1 -1.254e+01  -77.422  52.34494 1.0000
## 80:2-81:1 -1.776e+01  -66.968  31.44659 1.0000
## 81:2-81:1 -8.538e+00  -73.422  56.34494 1.0000
## 82:2-81:1 -2.154e+01 -107.731  64.65410 1.0000
## 70:3-81:1  6.962e+00  -79.231  93.15410 1.0000
## 71:3-81:1 -5.288e+00  -70.172  59.59494 1.0000
## 72:3-81:1  9.262e+00  -50.454  68.97750 1.0000
## 73:3-81:1  1.396e+01  -50.922  78.84494 1.0000
## 74:3-81:1 -1.204e+01  -68.045  43.96829 1.0000
## 75:3-81:1 -4.288e+00  -69.172  60.59494 1.0000
## 76:3-81:1 -8.038e+00  -72.922  56.84494 1.0000
## 77:3-81:1 -3.372e+00  -59.379  52.63495 1.0000
## 78:3-81:1 -5.288e+00  -56.281  45.70375 1.0000
## 79:3-81:1 -1.954e+01 -105.731  66.65410 1.0000
## 80:3-81:1 -5.692e+00  -50.202  38.81734 1.0000
## 81:3-81:1 -6.205e+00  -51.633  39.22234 1.0000
## 82:3-81:1 -1.054e+01  -59.746  38.66881 1.0000
## 70:2-82:1 -9.000e-01  -57.639  55.83889 1.0000
## 71:2-82:1 -1.310e+01  -75.254  49.05434 1.0000
## 72:2-82:1 -7.500e+00  -64.239  49.23889 1.0000
## 73:2-82:1 -5.243e+00  -55.077  44.59148 1.0000
## 74:2-82:1 -1.293e+01  -65.754  39.88770 1.0000
## 75:2-82:1  2.400e+00  -50.421  55.22103 1.0000
## 76:2-82:1  5.250e-01  -46.946  47.99616 1.0000
## 77:2-82:1 -6.100e+00  -68.254  56.05434 1.0000
## 78:2-82:1  1.207e+01  -40.754  64.88770 1.0000
## 79:2-82:1 -1.510e+01  -77.254  47.05434 1.0000
## 80:2-82:1 -2.032e+01  -65.871  25.22623 0.9995
## 81:2-82:1 -1.110e+01  -73.254  51.05434 1.0000
## 82:2-82:1 -2.410e+01 -108.257  60.05738 1.0000
## 70:3-82:1  4.400e+00  -79.757  88.55738 1.0000
## 71:3-82:1 -7.850e+00  -70.004  54.30434 1.0000
## 72:3-82:1  6.700e+00  -50.039  63.43889 1.0000
## 73:3-82:1  1.140e+01  -50.754  73.55434 1.0000
## 74:3-82:1 -1.460e+01  -67.421  38.22103 1.0000
## 75:3-82:1 -6.850e+00  -69.004  55.30434 1.0000
## 76:3-82:1 -1.060e+01  -72.754  51.55434 1.0000
## 77:3-82:1 -5.933e+00  -58.754  46.88770 1.0000
## 78:3-82:1 -7.850e+00  -55.321  39.62116 1.0000
## 79:3-82:1 -2.210e+01 -106.257  62.05738 1.0000
## 80:3-82:1 -8.254e+00  -48.682  32.17405 1.0000
## 81:3-82:1 -8.767e+00  -50.203  32.66956 1.0000
## 82:3-82:1 -1.310e+01  -58.648  32.44845 1.0000
## 71:2-70:2 -1.220e+01  -88.323  63.92321 1.0000
## 72:2-70:2 -6.600e+00  -78.370  65.16965 1.0000
## 73:2-70:2 -4.343e+00  -70.789  62.10293 1.0000
## 74:2-70:2 -1.203e+01  -80.748  56.68088 1.0000
## 75:2-70:2  3.300e+00  -65.414  72.01421 1.0000
## 76:2-70:2  1.425e+00  -63.267  66.11729 1.0000
## 77:2-70:2 -5.200e+00  -81.323  70.92321 1.0000
## 78:2-70:2  1.297e+01  -55.748  81.68088 1.0000
## 79:2-70:2 -1.420e+01  -90.323  61.92321 1.0000
## 80:2-70:2 -1.942e+01  -82.717  43.87266 1.0000
## 81:2-70:2 -1.020e+01  -86.323  65.92321 1.0000
## 82:2-70:2 -2.320e+01 -118.142  71.74233 1.0000
## 70:3-70:2  5.300e+00  -89.642 100.24233 1.0000
## 71:3-70:2 -6.950e+00  -83.073  69.17321 1.0000
## 72:3-70:2  7.600e+00  -64.170  79.36965 1.0000
## 73:3-70:2  1.230e+01  -63.823  88.42321 1.0000
## 74:3-70:2 -1.370e+01  -82.414  55.01421 1.0000
## 75:3-70:2 -5.950e+00  -82.073  70.17321 1.0000
## 76:3-70:2 -9.700e+00  -85.823  66.42321 1.0000
## 77:3-70:2 -5.033e+00  -73.748  63.68088 1.0000
## 78:3-70:2 -6.950e+00  -71.642  57.74229 1.0000
## 79:3-70:2 -2.120e+01 -116.142  73.74233 1.0000
## 80:3-70:2 -7.354e+00  -67.070  52.36212 1.0000
## 81:3-70:2 -7.867e+00  -68.270  52.53650 1.0000
## 82:3-70:2 -1.220e+01  -75.495  51.09488 1.0000
## 72:2-71:2  5.600e+00  -70.523  81.72321 1.0000
## 73:2-71:2  7.857e+00  -63.269  78.98311 1.0000
## 74:2-71:2  1.667e-01  -73.083  73.41626 1.0000
## 75:2-71:2  1.550e+01  -57.750  88.74960 1.0000
## 76:2-71:2  1.363e+01  -55.866  83.11567 1.0000
## 77:2-71:2  7.000e+00  -73.241  87.24091 1.0000
## 78:2-71:2  2.517e+01  -48.083  98.41626 1.0000
## 79:2-71:2 -2.000e+00  -82.241  78.24091 1.0000
## 80:2-71:2 -7.222e+00  -75.414  60.96944 1.0000
## 81:2-71:2  2.000e+00  -78.241  82.24091 1.0000
## 82:2-71:2 -1.100e+01 -109.275  87.27465 1.0000
## 70:3-71:2  1.750e+01  -80.775 115.77465 1.0000
## 71:3-71:2  5.250e+00  -74.991  85.49091 1.0000
## 72:3-71:2  1.980e+01  -56.323  95.92321 1.0000
## 73:3-71:2  2.450e+01  -55.741 104.74091 1.0000
## 74:3-71:2 -1.500e+00  -74.750  71.74960 1.0000
## 75:3-71:2  6.250e+00  -73.991  86.49091 1.0000
## 76:3-71:2  2.500e+00  -77.741  82.74091 1.0000
## 77:3-71:2  7.167e+00  -66.083  80.41626 1.0000
## 78:3-71:2  5.250e+00  -64.241  74.74067 1.0000
## 79:3-71:2 -9.000e+00 -107.275  89.27465 1.0000
## 80:3-71:2  4.846e+00  -60.037  69.72956 1.0000
## 81:3-71:2  4.333e+00  -61.183  69.84976 1.0000
## 82:3-71:2 -2.842e-14  -68.192  68.19166 1.0000
## 73:2-72:2  2.257e+00  -64.189  68.70293 1.0000
## 74:2-72:2 -5.433e+00  -74.148  63.28088 1.0000
## 75:2-72:2  9.900e+00  -58.814  78.61421 1.0000
## 76:2-72:2  8.025e+00  -56.667  72.71729 1.0000
## 77:2-72:2  1.400e+00  -74.723  77.52321 1.0000
## 78:2-72:2  1.957e+01  -49.148  88.28088 1.0000
## 79:2-72:2 -7.600e+00  -83.723  68.52321 1.0000
## 80:2-72:2 -1.282e+01  -76.117  50.47266 1.0000
## 81:2-72:2 -3.600e+00  -79.723  72.52321 1.0000
## 82:2-72:2 -1.660e+01 -111.542  78.34233 1.0000
## 70:3-72:2  1.190e+01  -83.042 106.84233 1.0000
## 71:3-72:2 -3.500e-01  -76.473  75.77321 1.0000
## 72:3-72:2  1.420e+01  -57.570  85.96965 1.0000
## 73:3-72:2  1.890e+01  -57.223  95.02321 1.0000
## 74:3-72:2 -7.100e+00  -75.814  61.61421 1.0000
## 75:3-72:2  6.500e-01  -75.473  76.77321 1.0000
## 76:3-72:2 -3.100e+00  -79.223  73.02321 1.0000
## 77:3-72:2  1.567e+00  -67.148  70.28088 1.0000
## 78:3-72:2 -3.500e-01  -65.042  64.34229 1.0000
## 79:3-72:2 -1.460e+01 -109.542  80.34233 1.0000
## 80:3-72:2 -7.538e-01  -60.470  58.96212 1.0000
## 81:3-72:2 -1.267e+00  -61.670  59.13650 1.0000
## 82:3-72:2 -5.600e+00  -68.895  57.69488 1.0000
## 74:2-73:2 -7.690e+00  -70.824  55.44274 1.0000
## 75:2-73:2  7.643e+00  -55.490  70.77607 1.0000
## 76:2-73:2  5.768e+00  -52.962  64.49819 1.0000
## 77:2-73:2 -8.571e-01  -71.983  70.26882 1.0000
## 78:2-73:2  1.731e+01  -45.824  80.44274 1.0000
## 79:2-73:2 -9.857e+00  -80.983  61.26882 1.0000
## 80:2-73:2 -1.508e+01  -72.267  42.10806 1.0000
## 81:2-73:2 -5.857e+00  -76.983  65.26882 1.0000
## 82:2-73:2 -1.886e+01 -109.842  72.12750 1.0000
## 70:3-73:2  9.643e+00  -81.342 100.62750 1.0000
## 71:3-73:2 -2.607e+00  -73.733  68.51882 1.0000
## 72:3-73:2  1.194e+01  -54.503  78.38864 1.0000
## 73:3-73:2  1.664e+01  -54.483  87.76882 1.0000
## 74:3-73:2 -9.357e+00  -72.490  53.77607 1.0000
## 75:3-73:2 -1.607e+00  -72.733  69.51882 1.0000
## 76:3-73:2 -5.357e+00  -76.483  65.76882 1.0000
## 77:3-73:2 -6.905e-01  -63.824  62.44274 1.0000
## 78:3-73:2 -2.607e+00  -61.337  56.12319 1.0000
## 79:3-73:2 -1.686e+01 -107.842  74.12750 1.0000
## 80:3-73:2 -3.011e+00  -56.210  50.18822 1.0000
## 81:3-73:2 -3.524e+00  -57.493  50.44564 1.0000
## 82:3-73:2 -7.857e+00  -65.045  49.33029 1.0000
## 75:2-74:2  1.533e+01  -50.183  80.84976 1.0000
## 76:2-74:2  1.346e+01  -47.827  74.74334 1.0000
## 77:2-74:2  6.833e+00  -66.416  80.08293 1.0000
## 78:2-74:2  2.500e+01  -40.516  90.51643 1.0000
## 79:2-74:2 -2.167e+00  -75.416  71.08293 1.0000
## 80:2-74:2 -7.389e+00  -67.197  52.41916 1.0000
## 81:2-74:2  1.833e+00  -71.416  75.08293 1.0000
## 82:2-74:2 -1.117e+01 -103.821  81.48756 1.0000
## 70:3-74:2  1.733e+01  -75.321 109.98756 1.0000
## 71:3-74:2  5.083e+00  -68.166  78.33293 1.0000
## 72:3-74:2  1.963e+01  -49.081  88.34755 1.0000
## 73:3-74:2  2.433e+01  -48.916  97.58293 1.0000
## 74:3-74:2 -1.667e+00  -67.183  63.84976 1.0000
## 75:3-74:2  6.083e+00  -67.166  79.33293 1.0000
## 76:3-74:2  2.333e+00  -70.916  75.58293 1.0000
## 77:3-74:2  7.000e+00  -58.516  72.51643 1.0000
## 78:3-74:2  5.083e+00  -56.202  66.36834 1.0000
## 79:3-74:2 -9.167e+00 -101.821  83.48756 1.0000
## 80:3-74:2  4.679e+00  -51.327  60.68623 1.0000
## 81:3-74:2  4.167e+00  -52.572  60.90556 1.0000
## 82:3-74:2 -1.667e-01  -59.975  59.64138 1.0000
## 76:2-75:2 -1.875e+00  -63.160  59.41001 1.0000
## 77:2-75:2 -8.500e+00  -81.750  64.74960 1.0000
## 78:2-75:2  9.667e+00  -55.850  75.18310 1.0000
## 79:2-75:2 -1.750e+01  -90.750  55.74960 1.0000
## 80:2-75:2 -2.272e+01  -82.530  37.08582 1.0000
## 81:2-75:2 -1.350e+01  -86.750  59.74960 1.0000
## 82:2-75:2 -2.650e+01 -119.154  66.15422 1.0000
## 70:3-75:2  2.000e+00  -90.654  94.65422 1.0000
## 71:3-75:2 -1.025e+01  -83.500  62.99960 1.0000
## 72:3-75:2  4.300e+00  -64.414  73.01421 1.0000
## 73:3-75:2  9.000e+00  -64.250  82.24960 1.0000
## 74:3-75:2 -1.700e+01  -82.516  48.51643 1.0000
## 75:3-75:2 -9.250e+00  -82.500  63.99960 1.0000
## 76:3-75:2 -1.300e+01  -86.250  60.24960 1.0000
## 77:3-75:2 -8.333e+00  -73.850  57.18310 1.0000
## 78:3-75:2 -1.025e+01  -71.535  51.03501 1.0000
## 79:3-75:2 -2.450e+01 -117.154  68.15422 1.0000
## 80:3-75:2 -1.065e+01  -66.661  45.35290 1.0000
## 81:3-75:2 -1.117e+01  -67.906  45.57223 1.0000
## 82:3-75:2 -1.550e+01  -75.308  44.30804 1.0000
## 77:2-76:2 -6.625e+00  -76.116  62.86567 1.0000
## 78:2-76:2  1.154e+01  -49.743  72.82668 1.0000
## 79:2-76:2 -1.563e+01  -85.116  53.86567 1.0000
## 80:2-76:2 -2.085e+01  -75.988  34.29307 1.0000
## 81:2-76:2 -1.163e+01  -81.116  57.86567 1.0000
## 82:2-76:2 -2.462e+01 -114.337  65.08707 1.0000
## 70:3-76:2  3.875e+00  -85.837  93.58707 1.0000
## 71:3-76:2 -8.375e+00  -77.866  61.11567 1.0000
## 72:3-76:2  6.175e+00  -58.517  70.86729 1.0000
## 73:3-76:2  1.088e+01  -58.616  80.36567 1.0000
## 74:3-76:2 -1.513e+01  -76.410  46.16001 1.0000
## 75:3-76:2 -7.375e+00  -76.866  62.11567 1.0000
## 76:3-76:2 -1.113e+01  -80.616  58.36567 1.0000
## 77:3-76:2 -6.458e+00  -67.743  54.82668 1.0000
## 78:3-76:2 -8.375e+00  -65.114  48.36389 1.0000
## 79:3-76:2 -2.263e+01 -112.337  67.08707 1.0000
## 80:3-76:2 -8.779e+00  -59.771  42.21336 1.0000
## 81:3-76:2 -9.292e+00  -61.087  42.50362 1.0000
## 82:3-76:2 -1.363e+01  -68.765  41.51529 1.0000
## 78:2-77:2  1.817e+01  -55.083  91.41626 1.0000
## 79:2-77:2 -9.000e+00  -89.241  71.24091 1.0000
## 80:2-77:2 -1.422e+01  -82.414  53.96944 1.0000
## 81:2-77:2 -5.000e+00  -85.241  75.24091 1.0000
## 82:2-77:2 -1.800e+01 -116.275  80.27465 1.0000
## 70:3-77:2  1.050e+01  -87.775 108.77465 1.0000
## 71:3-77:2 -1.750e+00  -81.991  78.49091 1.0000
## 72:3-77:2  1.280e+01  -63.323  88.92321 1.0000
## 73:3-77:2  1.750e+01  -62.741  97.74091 1.0000
## 74:3-77:2 -8.500e+00  -81.750  64.74960 1.0000
## 75:3-77:2 -7.500e-01  -80.991  79.49091 1.0000
## 76:3-77:2 -4.500e+00  -84.741  75.74091 1.0000
## 77:3-77:2  1.667e-01  -73.083  73.41626 1.0000
## 78:3-77:2 -1.750e+00  -71.241  67.74067 1.0000
## 79:3-77:2 -1.600e+01 -114.275  82.27465 1.0000
## 80:3-77:2 -2.154e+00  -67.037  62.72956 1.0000
## 81:3-77:2 -2.667e+00  -68.183  62.84976 1.0000
## 82:3-77:2 -7.000e+00  -75.192  61.19166 1.0000
## 79:2-78:2 -2.717e+01 -100.416  46.08293 1.0000
## 80:2-78:2 -3.239e+01  -92.197  27.41916 0.9851
## 81:2-78:2 -2.317e+01  -96.416  50.08293 1.0000
## 82:2-78:2 -3.617e+01 -128.821  56.48756 1.0000
## 70:3-78:2 -7.667e+00 -100.321  84.98756 1.0000
## 71:3-78:2 -1.992e+01  -93.166  53.33293 1.0000
## 72:3-78:2 -5.367e+00  -74.081  63.34755 1.0000
## 73:3-78:2 -6.667e-01  -73.916  72.58293 1.0000
## 74:3-78:2 -2.667e+01  -92.183  38.84976 0.9999
## 75:3-78:2 -1.892e+01  -92.166  54.33293 1.0000
## 76:3-78:2 -2.267e+01  -95.916  50.58293 1.0000
## 77:3-78:2 -1.800e+01  -83.516  47.51643 1.0000
## 78:3-78:2 -1.992e+01  -81.202  41.36834 1.0000
## 79:3-78:2 -3.417e+01 -126.821  58.48756 1.0000
## 80:3-78:2 -2.032e+01  -76.327  35.68623 1.0000
## 81:3-78:2 -2.083e+01  -77.572  35.90556 1.0000
## 82:3-78:2 -2.517e+01  -84.975  34.64138 0.9999
## 80:2-79:2 -5.222e+00  -73.414  62.96944 1.0000
## 81:2-79:2  4.000e+00  -76.241  84.24091 1.0000
## 82:2-79:2 -9.000e+00 -107.275  89.27465 1.0000
## 70:3-79:2  1.950e+01  -78.775 117.77465 1.0000
## 71:3-79:2  7.250e+00  -72.991  87.49091 1.0000
## 72:3-79:2  2.180e+01  -54.323  97.92321 1.0000
## 73:3-79:2  2.650e+01  -53.741 106.74091 1.0000
## 74:3-79:2  5.000e-01  -72.750  73.74960 1.0000
## 75:3-79:2  8.250e+00  -71.991  88.49091 1.0000
## 76:3-79:2  4.500e+00  -75.741  84.74091 1.0000
## 77:3-79:2  9.167e+00  -64.083  82.41626 1.0000
## 78:3-79:2  7.250e+00  -62.241  76.74067 1.0000
## 79:3-79:2 -7.000e+00 -105.275  91.27465 1.0000
## 80:3-79:2  6.846e+00  -58.037  71.72956 1.0000
## 81:3-79:2  6.333e+00  -59.183  71.84976 1.0000
## 82:3-79:2  2.000e+00  -66.192  70.19166 1.0000
## 81:2-80:2  9.222e+00  -58.969  77.41388 1.0000
## 82:2-80:2 -3.778e+00  -92.487  84.93189 1.0000
## 70:3-80:2  2.472e+01  -63.987 113.43189 1.0000
## 71:3-80:2  1.247e+01  -55.719  80.66388 1.0000
## 72:3-80:2  2.702e+01  -36.273  90.31711 0.9998
## 73:3-80:2  3.172e+01  -36.469  99.91388 0.9989
## 74:3-80:2  5.722e+00  -54.086  65.53027 1.0000
## 75:3-80:2  1.347e+01  -54.719  81.66388 1.0000
## 76:3-80:2  9.722e+00  -58.469  77.91388 1.0000
## 77:3-80:2  1.439e+01  -45.419  74.19693 1.0000
## 78:3-80:2  1.247e+01  -42.668  67.61251 1.0000
## 79:3-80:2 -1.778e+00  -90.487  86.93189 1.0000
## 80:3-80:2  1.207e+01  -37.139  61.27565 1.0000
## 81:3-80:2  1.156e+01  -38.483  61.59456 1.0000
## 82:3-80:2  7.222e+00  -46.272  60.71616 1.0000
## 82:2-81:2 -1.300e+01 -111.275  85.27465 1.0000
## 70:3-81:2  1.550e+01  -82.775 113.77465 1.0000
## 71:3-81:2  3.250e+00  -76.991  83.49091 1.0000
## 72:3-81:2  1.780e+01  -58.323  93.92321 1.0000
## 73:3-81:2  2.250e+01  -57.741 102.74091 1.0000
## 74:3-81:2 -3.500e+00  -76.750  69.74960 1.0000
## 75:3-81:2  4.250e+00  -75.991  84.49091 1.0000
## 76:3-81:2  5.000e-01  -79.741  80.74091 1.0000
## 77:3-81:2  5.167e+00  -68.083  78.41626 1.0000
## 78:3-81:2  3.250e+00  -66.241  72.74067 1.0000
## 79:3-81:2 -1.100e+01 -109.275  87.27465 1.0000
## 80:3-81:2  2.846e+00  -62.037  67.72956 1.0000
## 81:3-81:2  2.333e+00  -63.183  67.84976 1.0000
## 82:3-81:2 -2.000e+00  -70.192  66.19166 1.0000
## 70:3-82:2  2.850e+01  -84.978 141.97779 1.0000
## 71:3-82:2  1.625e+01  -82.025 114.52465 1.0000
## 72:3-82:2  3.080e+01  -64.142 125.74233 1.0000
## 73:3-82:2  3.550e+01  -62.775 133.77465 1.0000
## 74:3-82:2  9.500e+00  -83.154 102.15422 1.0000
## 75:3-82:2  1.725e+01  -81.025 115.52465 1.0000
## 76:3-82:2  1.350e+01  -84.775 111.77465 1.0000
## 77:3-82:2  1.817e+01  -74.488 110.82089 1.0000
## 78:3-82:2  1.625e+01  -73.462 105.96207 1.0000
## 79:3-82:2  2.000e+00 -111.478 115.47779 1.0000
## 80:3-82:2  1.585e+01  -70.346 102.03872 1.0000
## 81:3-82:2  1.533e+01  -71.337 102.00342 1.0000
## 82:3-82:2  1.100e+01  -77.710  99.70967 1.0000
## 71:3-70:3 -1.225e+01 -110.525  86.02465 1.0000
## 72:3-70:3  2.300e+00  -92.642  97.24233 1.0000
## 73:3-70:3  7.000e+00  -91.275 105.27465 1.0000
## 74:3-70:3 -1.900e+01 -111.654  73.65422 1.0000
## 75:3-70:3 -1.125e+01 -109.525  87.02465 1.0000
## 76:3-70:3 -1.500e+01 -113.275  83.27465 1.0000
## 77:3-70:3 -1.033e+01 -102.988  82.32089 1.0000
## 78:3-70:3 -1.225e+01 -101.962  77.46207 1.0000
## 79:3-70:3 -2.650e+01 -139.978  86.97779 1.0000
## 80:3-70:3 -1.265e+01  -98.846  73.53872 1.0000
## 81:3-70:3 -1.317e+01  -99.837  73.50342 1.0000
## 82:3-70:3 -1.750e+01 -106.210  71.20967 1.0000
## 72:3-71:3  1.455e+01  -61.573  90.67321 1.0000
## 73:3-71:3  1.925e+01  -60.991  99.49091 1.0000
## 74:3-71:3 -6.750e+00  -80.000  66.49960 1.0000
## 75:3-71:3  1.000e+00  -79.241  81.24091 1.0000
## 76:3-71:3 -2.750e+00  -82.991  77.49091 1.0000
## 77:3-71:3  1.917e+00  -71.333  75.16626 1.0000
## 78:3-71:3  2.700e-13  -69.491  69.49067 1.0000
## 79:3-71:3 -1.425e+01 -112.525  84.02465 1.0000
## 80:3-71:3 -4.038e-01  -65.287  64.47956 1.0000
## 81:3-71:3 -9.167e-01  -66.433  64.59976 1.0000
## 82:3-71:3 -5.250e+00  -73.442  62.94166 1.0000
## 73:3-72:3  4.700e+00  -71.423  80.82321 1.0000
## 74:3-72:3 -2.130e+01  -90.014  47.41421 1.0000
## 75:3-72:3 -1.355e+01  -89.673  62.57321 1.0000
## 76:3-72:3 -1.730e+01  -93.423  58.82321 1.0000
## 77:3-72:3 -1.263e+01  -81.348  56.08088 1.0000
## 78:3-72:3 -1.455e+01  -79.242  50.14229 1.0000
## 79:3-72:3 -2.880e+01 -123.742  66.14233 1.0000
## 80:3-72:3 -1.495e+01  -74.670  44.76212 1.0000
## 81:3-72:3 -1.547e+01  -75.870  44.93650 1.0000
## 82:3-72:3 -1.980e+01  -83.095  43.49488 1.0000
## 74:3-73:3 -2.600e+01  -99.250  47.24960 1.0000
## 75:3-73:3 -1.825e+01  -98.491  61.99091 1.0000
## 76:3-73:3 -2.200e+01 -102.241  58.24091 1.0000
## 77:3-73:3 -1.733e+01  -90.583  55.91626 1.0000
## 78:3-73:3 -1.925e+01  -88.741  50.24067 1.0000
## 79:3-73:3 -3.350e+01 -131.775  64.77465 1.0000
## 80:3-73:3 -1.965e+01  -84.537  45.22956 1.0000
## 81:3-73:3 -2.017e+01  -85.683  45.34976 1.0000
## 82:3-73:3 -2.450e+01  -92.692  43.69166 1.0000
## 75:3-74:3  7.750e+00  -65.500  80.99960 1.0000
## 76:3-74:3  4.000e+00  -69.250  77.24960 1.0000
## 77:3-74:3  8.667e+00  -56.850  74.18310 1.0000
## 78:3-74:3  6.750e+00  -54.535  68.03501 1.0000
## 79:3-74:3 -7.500e+00 -100.154  85.15422 1.0000
## 80:3-74:3  6.346e+00  -49.661  62.35290 1.0000
## 81:3-74:3  5.833e+00  -50.906  62.57223 1.0000
## 82:3-74:3  1.500e+00  -58.308  61.30804 1.0000
## 76:3-75:3 -3.750e+00  -83.991  76.49091 1.0000
## 77:3-75:3  9.167e-01  -72.333  74.16626 1.0000
## 78:3-75:3 -1.000e+00  -70.491  68.49067 1.0000
## 79:3-75:3 -1.525e+01 -113.525  83.02465 1.0000
## 80:3-75:3 -1.404e+00  -66.287  63.47956 1.0000
## 81:3-75:3 -1.917e+00  -67.433  63.59976 1.0000
## 82:3-75:3 -6.250e+00  -74.442  61.94166 1.0000
## 77:3-76:3  4.667e+00  -68.583  77.91626 1.0000
## 78:3-76:3  2.750e+00  -66.741  72.24067 1.0000
## 79:3-76:3 -1.150e+01 -109.775  86.77465 1.0000
## 80:3-76:3  2.346e+00  -62.537  67.22956 1.0000
## 81:3-76:3  1.833e+00  -63.683  67.34976 1.0000
## 82:3-76:3 -2.500e+00  -70.692  65.69166 1.0000
## 78:3-77:3 -1.917e+00  -63.202  59.36834 1.0000
## 79:3-77:3 -1.617e+01 -108.821  76.48756 1.0000
## 80:3-77:3 -2.321e+00  -58.327  53.68623 1.0000
## 81:3-77:3 -2.833e+00  -59.572  53.90556 1.0000
## 82:3-77:3 -7.167e+00  -66.975  52.64138 1.0000
## 79:3-78:3 -1.425e+01 -103.962  75.46207 1.0000
## 80:3-78:3 -4.038e-01  -51.396  50.58836 1.0000
## 81:3-78:3 -9.167e-01  -52.712  50.87862 1.0000
## 82:3-78:3 -5.250e+00  -60.390  49.89029 1.0000
## 80:3-79:3  1.385e+01  -72.346 100.03872 1.0000
## 81:3-79:3  1.333e+01  -73.337 100.00342 1.0000
## 82:3-79:3  9.000e+00  -79.710  97.70967 1.0000
## 81:3-80:3 -5.128e-01  -45.940  44.91465 1.0000
## 82:3-80:3 -4.846e+00  -54.053  44.36112 1.0000
## 82:3-81:3 -4.333e+00  -54.372  45.70567 1.0000
#performs a THSD test for the interaction of the model year and the country of origin

Tukey’s HSD returns a large matrix that contains statistical parameters for the interaction of an individual sample mean with every other sample mean being statistically analyzed. For the post-hoc analysis of the model year and the interaction of the model year and the country of origin, large matrices are returned due to the large number of comparisons that are made. Since the confidence level selected for these post-hoc test was 0.95, any p adj value less than 0.05 indicates that there is a high probability that the variation between the two horse power means being compared is not due solely to randomization. This is easier to visualize in the post-hoc analysis of the horse power means of the country of origin. The comparison made between country 2 and country 1 and country 3 and country 1 both returned p adj values of 0.00 and produced confidence intervals that do not contain the number 0. This indicates that there is a high probability that the variation of horse power means observed between country 2 and 1 and country 3 and 1 cannot be attributed solely to randomization. It is very likely that the difference in horse power variation between those vehicles is a result of the country of origin. The post-hoc test between country 2 and country 3 returned a p adj value of 0.25 and produced a confidence interval that contains the number 0. This indicates that the variation of horse power means observed between country 2 and country 3 can be attributed to randomization.

Estimation of Parameters

Summary of all factors and levels

#Summaries
seventy<-cars$V1=="70" 
#assigns all of the '70' data to the vector, seventy
summary(cars[seventy,"V3"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##      46      95     150     146     198     225
#displays a summary of the horse power data for the year of 1970

seventy_one<-cars$V1=="71" 
#assigns all of the '71' data to the vector, seventy_one
summary(cars[seventy_one,"V3"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##      60      81      95     107     130     180       1
#displays a summary of the horse power data for the year of 1971

seventy_two<-cars$V1=="72" 
#assigns all of the '72' data to the vector, seventy_two
summary(cars[seventy_two,"V3"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    54.0    86.8   104.0   120.0   151.0   208.0
#displays a summary of the horse power data for the year of 1972

seventy_three<-cars$V1=="73" 
#assigns all of the '73' data to the vector, seventy_three
summary(cars[seventy_three,"V3"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    46.0    93.2   130.0   130.0   160.0   230.0
#displays a summary of the horse power data for the year of 1973

seventy_four<-cars$V1=="74" 
#assigns all of the '74' data to the vector, seventy_four
summary(cars[seventy_four,"V3"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    52.0    75.0    93.0    94.3   102.0   150.0
#displays a summary of the horse power data for the year of 1974

seventy_five<-cars$V1=="75" 
#assigns all of the '75' data to the vector, seventy_five
summary(cars[seventy_five,"V3"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    53.0    84.2    97.0   101.0   110.0   170.0
#displays a summary of the horse power data for the year of 1975

seventy_six<-cars$V1=="76" 
#assigns all of the '76' data to the vector, seventy_six
summary(cars[seventy_six,"V3"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    52.0    78.2    93.5   101.0   120.0   180.0
#displays a summary of the horse power data for the year of 1976

seventy_seven<-cars$V1=="77" 
#assigns all of the '77' data to the vector, seventy_seven
summary(cars[seventy_seven,"V3"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    58.0    78.0    97.5   105.0   115.0   190.0
#displays a summary of the horse power data for the year of 1977

seventy_eight<-cars$V1=="78" 
#assigns all of the '78' data to the vector, seventy_eight
summary(cars[seventy_eight,"V3"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    48.0    82.5    97.0    99.7   116.0   165.0
#displays a summary of the horse power data for the year of 1978

seventy_nine<-cars$V1=="79" 
#assigns all of the '79' data to the vector, seventy_nine
summary(cars[seventy_nine,"V3"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##      65      77      90     101     125     155
#displays a summary of the horse power data for the year of 1979

eighty<-cars$V1=="80" 
#assigns all of the '80' data to the vector, eighty
summary(cars[eighty,"V3"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    48.0    67.0    72.0    76.9    90.0   132.0
#displays a summary of the horse power data for the year of 1980

eighty_one<-cars$V1=="81" 
#assigns all of the '81' data to the vector, eighty_one
summary(cars[eighty_one,"V3"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    58.0    65.0    75.0    80.8    88.0   120.0
#displays a summary of the horse power data for the year of 1981

eighty_two<-cars$V1=="82" 
#assigns all of the '82' data to the vector, eighty_two
summary(cars[eighty_two,"V3"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    52.0    70.0    84.0    81.7    89.0   112.0
#displays a summary of the horse power data for the year of 1982

#Country of Origin
country_one<-cars$V2=="1" 
#assigns all of the '1' to the vector, country_one
summary(cars[country_one,"V3"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##      52      88     105     118     150     230       1
#displays a summary of the horse power data for country 1

country_two<-cars$V2=="2" 
#assigns all of the '2' to the vector, country_two
summary(cars[country_two,"V3"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    46.0    69.2    76.0    80.3    90.0   133.0
#displays a summary of the horse power data for country 2

country_three<-cars$V2=="3" 
#assigns all of the '3' to the vector, country_three
summary(cars[country_three,"V3"])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    52.0    67.0    75.0    79.8    95.0   132.0
#displays a summary of the horse power data for country 3

Diagnostics/Model Adequacy Checking

Quantile-Quantile (Q-Q) plots are graphs used to verify the distributional assumption for a set of data. Based on the theoretical distribution, the expected value for each datum is determined. If the data values in a set follow the theoretical distribution, then they will appear as a straight line on a Q-Q plot. When an anova is performed, it is done so with the assumption that the test statistic follows a normal distribution. Visualization of a Q-Q plot will further confirm if that assumption is correct for the anova tests that were performed.

#Q-Q Plots
#Model Year
qqnorm(residuals(model_year), main="Normal Q-Q Plot for Model Year", ylab="Horse Power Residuals")
qqline(residuals(model_year))

plot of chunk unnamed-chunk-7

#produces a Q-Q normal plot for the model Year residuals with a normal fit line

#Country of Origin
qqnorm(residuals(model_country),main="Normal Q-Q Plot for Country of Origin", ylab="Horse Power Residuals")
qqline(residuals(model_country))

plot of chunk unnamed-chunk-7

#produces a Q-Q normal plot for the model Year residuals with a normal fit line

#CModel Year and Country of Origin
qqnorm(residuals(model_year_country), main="Normal Q-Q Plot for the Interaction of Model Year and Country of Origin", ylab="Horse Power Residuals")
qqline(residuals(model_year_country))

plot of chunk unnamed-chunk-7

#produces a Q-Q normal plot for the model Year residuals with a normal fit line

The Normal Q-Q plots for the model year and the interaction of model year and country of origin returned relatively linear relationships between the horse power values and the theoretical quantities, indicating that they follow the theoretical distribution. The Normal Q-Q plot for the country of origin also produced a relatively linear line, but contained tails that deviated from the linear line on the Q-Q plot. This could indicate that the data is not normally distributed; however, no certain conclusion can be made by visual inspection. It is likely that the small quantity of countries made any deviation from the linear plot look more pronounced. It can be assumed that the tail deviations do not indicate that the data set is not normally distributed. For an ANOVA, the data sets must follow a normal distribution. The relatively linear relationship for all three data sets justifies the use of ANOVA to test for the significant difference.

Two Way Interaction Plots display the mean of the response for two-way combinations of factors, and can indicate if there is any interactions between them through visual inspection. Data sets that do not have any interaction will appear as perfectly parallel lines. Changes in slope and intersections are good indications of interactions.

interaction.plot(cars$V1,cars$V2,cars$V3, xlab="Model Year", ylab="Means of Horse Power", main="Interaction Plot", trace.label="Country")

plot of chunk unnamed-chunk-8

#creates a plot that shows the interaction of the model and country on a vehicles's horsepower

In the interaction plot above, there are clear observations of changes in slope and plot intersections, indicating some degree of interaction between the model year and the country of origin of the vehicle, in regards to the response variable, horse power. This supports the results observed from the anova and the post-hoc analysis.

A Residuals vs. Fits Plot is a common graph used in residual analysis. It is a scatter plot of residuals as a function of fitted values, or the estimated responses. These plots are used to identify linearity, outliers, and error variances.

#Model Year
plot(fitted(model_year),residuals(model_year), main="Residual vs Fitted Plot for Model Year") 

plot of chunk unnamed-chunk-9

#Country of Origin
plot(fitted(model_country),residuals(model_country), main="Residual vs Fitted Plot for Country of Origin")

plot of chunk unnamed-chunk-9

#Model Year and Country
plot(fitted(model_year_country),residuals(model_year_country), main="Residual vs Fitted Plot for Interaction") 

plot of chunk unnamed-chunk-9

The three residual plots above all show a large degree of variation of the residual values. However, the distribution of the residuals for the model year and the interaction can be considered evenly distributed about zero. The distributed of residuals of the country of origin plot appear to be more positively skewed, but not so much to indicate that the data set should not be considered. This, in addition to the lack of any blatant outliers for all three plots, confirms the use of anova in this recipe.

4. References to the Literature

No literature was used in this sample recipe

5. Appendices

The raw data used in this statistical analysis are results of vehicle testing. It can be readily accessed using R or RStudio. It is available as a downloadable package and can be found online at http://www.mathcs.org/statistics/datasets/.