library(readxl)
## Warning: package 'readxl' was built under R version 3.4.2
DATOS_BIOSTA <- read_excel("C:/Users/usuario/Desktop/DATOS BIOSTA.xlsx",
sheet = "Hoja1")
View(DATOS_BIOSTA)
attach(DATOS_BIOSTA)
tapply(Promedio_global,Nivel,mean)
## 1 2 3 4 5 6
## 7.858750 7.356923 7.076667 8.525000 8.320000 7.400000
tapply(Promedio_global,Nivel,sd)
## 1 2 3 4 5 6
## 0.8846054 0.8047348 0.8169938 0.3889087 NA NA
tapply(Promedio_global,Nivel,length)
## 1 2 3 4 5 6
## 8 26 12 2 1 1
anova<-aov(Promedio_global~Nivel)
summary(anova)
## Df Sum Sq Mean Sq F value Pr(>F)
## Nivel 1 0.01 0.0146 0.02 0.889
## Residuals 48 35.44 0.7384
shapiro.test(residuals(anova))
##
## Shapiro-Wilk normality test
##
## data: residuals(anova)
## W = 0.98499, p-value = 0.7713
library(car)
## Warning: package 'car' was built under R version 3.4.2
levene.test(Promedio_global~as.factor(Nivel))
## Warning: 'levene.test' is deprecated.
## Use 'leveneTest' instead.
## See help("Deprecated") and help("car-deprecated").
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 5 0.7887 0.5635
## 44
drop1(anova,test = "F")
## Single term deletions
##
## Model:
## Promedio_global ~ Nivel
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 35.443 -13.205
## Nivel 1 0.014618 35.457 -15.184 0.0198 0.8887
Se encontró que el 4to nivel posee el promedio mas alto con una media de (8.52,±0.38,n=2) Consecuentemente se comprobo que el nivel 3 posee el promedio mas bajo con una media de (7.07,±0,81,n=12)