Modified from hybridInflo Biomass.Rmd (April 2017)
Identify reproductive barriers between two sympatric moth-pollinated plant species, Schiedea kaalae and S. hookeri by fitting a generalized linear mixed model (GLMM).
In the experimental design, the following crosstypes were made:
In this analysis the response variable is the biomass of the offspring produced by each cross. Other barriers (hybrid survival, flowering) could be analyzed in a similar framework, with appropriate changes to the underlying distribution.
Fixed effects:
Potential random effects:
ib <- read.table("inflobiomass.csv", header=T, sep="\t",
colClasses=c(collect.date="Date", weigh.date="Date"))
crosses <- read.table("hybrids.csv", header=T, sep="\t", colClasses=c(mompop="factor", dadpop="factor"))
crosscol <- c("green","blue","orange","red")
#treat populations as factors
ib$mompop <- crosses$mompop[match(ib$crossid, crosses$crossid)]
ib$momid <- crosses$momid[match(ib$crossid, crosses$crossid)]
ib$species <- crosses$momsp[match(ib$crossid, crosses$crossid)]
ib$dadpop <- crosses$dadpop[match(ib$crossid, crosses$crossid)]
ib$dadid <- crosses$dadid[match(ib$crossid, crosses$crossid)]
ib$dadsp <- crosses$dadsp[match(ib$crossid, crosses$crossid)]
ib$crosstype <- crosses$crosstype[match(ib$crossid, crosses$crossid)]
ib$cross <- crosses$cross[match(ib$crossid, crosses$crossid)]
#rename crosstype codes
ib$crosstype <- factor(ib$crosstype, levels=c("between", "within", "hybrid"))
#made "between" the first reference level to facilitate comparison between outcrossing populations and hybridizing species
ib$mompop <- sapply(ib$mompop, mapvalues, from = c("794","866","899","879","892","904","3587"), to = c("WK","WK","WK","879WKG","892WKG","904WPG","3587WP"))
ib$dadpop <- sapply(ib$dadpop, mapvalues, from = c("794","866","899","879","892","904","3587"), to = c("WK","WK","WK","879WKG","892WKG","904WPG","3587WP"))
#define interactions
ib <- within(ib, sxc <- interaction(species,crosstype))
ib <- within(ib, sxcxm <- interaction(species,crosstype,mompop,momid))
ib <- within(ib, mompid <- as.factor(paste(mompop,momid,sep=".")))
ib <- within(ib, dadpid <- as.factor(paste(dadpop,dadid,sep=".")))
ib <- within(ib, smompop <- as.factor(paste(species,mompop,sep="")))
ib$collect.date <- round(difftime(ib$collect.date, "2016-03-01"))
#check final structure
str(ib)
'data.frame': 1528 obs. of 28 variables:
$ crossid : int 1 1 1 1 1 1 1 1 1 1 ...
$ plantid : Factor w/ 25 levels "1","10","11",..: 1 15 20 23 24 24 2 2 3 4 ...
$ cross : Factor w/ 4 levels "HH","HK","KH",..: 1 1 1 1 1 1 1 1 1 1 ...
$ block1 : int 12 12 11 12 12 12 12 12 12 12 ...
$ blockAB : Factor w/ 3 levels "","A","B": 1 1 1 1 1 1 1 1 1 1 ...
$ collect.date:Class 'difftime' atomic [1:1528] 350 353 347 354 325 325 344 344 355 332 ...
.. ..- attr(*, "units")= chr "days"
$ regression : Factor w/ 5 levels "","backup R",..: 4 4 4 4 3 5 3 5 4 3 ...
$ flrs : int NA NA NA NA NA 41 NA 34 NA NA ...
$ inflo.e : int 1 4 10 7 31 1 3 1 6 10 ...
$ inflo : int 1 4 10 7 32 NA 4 NA 6 11 ...
$ weigh.date : Date, format: "17-07-14" "17-05-18" ...
$ mass : num 0.053 0.075 1.113 0.44 2.14 ...
$ initials : Factor w/ 4 levels "AK","AK ","SS",..: 3 3 3 3 3 3 3 3 3 3 ...
$ check : Factor w/ 22 levels "","AK 8/15/17",..: 2 2 2 2 2 2 2 2 2 2 ...
$ comments : Factor w/ 66 levels "","11 open fls",..: 1 1 1 1 1 1 21 1 1 1 ...
$ linenum : num 1 2 3 4 5 6 7 8 9 10 ...
$ mompop : Factor w/ 5 levels "3587WP","WK",..: 3 3 3 3 3 3 3 3 3 3 ...
$ momid : Factor w/ 17 levels "1","10","10-1",..: 7 7 7 7 7 7 7 7 7 7 ...
$ species : Factor w/ 2 levels "hook","kaal": 1 1 1 1 1 1 1 1 1 1 ...
$ dadpop : Factor w/ 5 levels "3587WP","WK",..: 3 3 3 3 3 3 3 3 3 3 ...
$ dadid : Factor w/ 23 levels "1","10","10-1",..: 19 19 19 19 19 19 19 19 19 19 ...
$ dadsp : Factor w/ 2 levels "hook","kaal": 1 1 1 1 1 1 1 1 1 1 ...
$ crosstype : Factor w/ 3 levels "between","within",..: 2 2 2 2 2 2 2 2 2 2 ...
$ sxc : Factor w/ 6 levels "hook.between",..: 3 3 3 3 3 3 3 3 3 3 ...
$ sxcxm : Factor w/ 510 levels "hook.between.3587WP.1",..: 195 195 195 195 195 195 195 195 195 195 ...
$ mompid : Factor w/ 21 levels "3587WP.10","3587WP.14",..: 8 8 8 8 8 8 8 8 8 8 ...
$ dadpid : Factor w/ 23 levels "3587WP.10","3587WP.14",..: 9 9 9 9 9 9 9 9 9 9 ...
$ smompop : Factor w/ 5 levels "hook879WKG","hookWK",..: 1 1 1 1 1 1 1 1 1 1 ...
library(ggplot2)
qplot(log10(mass), log10(flrs), col=cross, data=ib, weight=mass) + geom_smooth(method="lm", se=T) + scale_color_manual(values=crosscol) + ggtitle("cross")
qplot(log10(mass), log10(flrs), col=cross, group=paste(mompop,dadpop), data=ib) + geom_smooth(method="lm", se=F) + scale_color_manual(values=crosscol) + ggtitle("mompop*dadpop")
#qplot(log10(mass), log10(flrs), col=cross, data=ib, weight=mass) + geom_quantile(quantiles = 0.9) + scale_color_manual(values=crosscol)
#plot(log10(flrs)~log10(mass), data=ib, type="n")
#text(log10(ib$mass), log10(ib$flrs), 1:length(ib$plantid), col=crosscol[ib$cross])
#library(quantreg,log10(flrs)~log10(mass)*cross, data=ib[-exclude,], weights=mass)
#qr <- rq(log10(flrs)~log10(mass)*cross, data=ib[-exclude,], tau = 0.9)
#summary(qr)
mf <- lm(log10(flrs)~log10(mass)*cross, data=ib, weights=mass)
#plot(mf)
mass.flrs <- summary(mf)
mass.flrs
Call:
lm(formula = log10(flrs) ~ log10(mass) * cross, data = ib, weights = mass)
Weighted Residuals:
Min 1Q Median 3Q Max
-0.32549 -0.04318 0.00825 0.05360 0.32532
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.54429 0.07685 33.108 < 2e-16 ***
log10(mass) 0.91156 0.08689 10.491 < 2e-16 ***
crossHK 0.22495 0.07812 2.879 0.004158 **
crossKH 0.25375 0.08232 3.082 0.002169 **
crossKK -0.05870 0.07723 -0.760 0.447550
log10(mass):crossHK 0.24313 0.09610 2.530 0.011715 *
log10(mass):crossKH 0.22703 0.11299 2.009 0.045047 *
log10(mass):crossKK 0.30545 0.09000 3.394 0.000744 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.08916 on 495 degrees of freedom
(1025 observations deleted due to missingness)
Multiple R-squared: 0.9156, Adjusted R-squared: 0.9144
F-statistic: 766.8 on 7 and 495 DF, p-value: < 2.2e-16
slopes <- mass.flrs$coefficients[c(2,6,7,8),"Estimate"]
slopes[c(2,3,4)] <- slopes[c(2,3,4)]+slopes[1]
names(slopes) <- levels(ib$cross)
slopes
HH HK KH KK
0.911560 1.154691 1.138592 1.217012
intercepts <- mass.flrs$coefficients[c(1,3,4,5),"Estimate"]
intercepts[c(2,3,4)] <- intercepts[c(2,3,4)]+intercepts[1]
names(intercepts) <- levels(ib$cross)
intercepts
HH HK KH KK
2.544293 2.769240 2.798040 2.485588
#with(ib, plot(mass,flrs, col=crosscol[cross], xlim=c(0,0.5), ylim=c(0,240)))
#for(i in 1:4) { curve(10^intercepts[i]*x^slopes[i], from=0, to=6, col=crosscol[i], add=T) }
#with(ib, plot(log10(mass),log10(flrs), col=crosscol[cross]))
#for(i in 1:4) { curve(intercepts[i]+x*slopes[i], from=-2, to=1, col=crosscol[i], add=T) }
#Add together envelopes for regression and the rest
ibold <- ib
ib <- aggregate(mass ~ crossid+plantid+cross+mompop+momid+species+dadpop+dadid+dadsp+crosstype+sxc+sxcxm+mompid+dadpid+smompop, ib, sum, na.action=na.pass)
ib$collect.date <- aggregate(collect.date ~ crossid+plantid+cross+mompop+momid+species+dadpop+dadid+dadsp+crosstype+sxc+sxcxm+mompid+dadpid+smompop, ibold, max, na.action=na.pass)$collect.date
pred <- predict(mf, ib, se.fit=T)
ib$flrs <- 10^pred$fit
ib$seflrs <- pred$se.fit
The sample sizes are unbalanced at all levels, including maternal population:
reptab <- with(ib, table(smompop,crosstype))
mosaic(reptab, pop=F)
labeling_cells(text = reptab, margin = 0)(reptab)
Replication is low for some within-population crosses. The replication is even lower for each maternal plant, so we need to be wary of estimates when subsetting at this level:
with(ib, kable(table(mompid,crosstype)))
| between | within | hybrid | |
|---|---|---|---|
| 3587WP.10 | 0 | 1 | 0 |
| 3587WP.14 | 15 | 0 | 6 |
| 3587WP.15 | 4 | 0 | 0 |
| 3587WP.7 | 19 | 14 | 8 |
| 3587WP.A | 5 | 0 | 0 |
| 3587WP.C | 12 | 1 | 0 |
| 879WKG.10-1 | 48 | 1 | 35 |
| 879WKG.2-2 | 31 | 35 | 89 |
| 879WKG.G-2 | 15 | 5 | 26 |
| 879WKG.H-2 | 0 | 0 | 7 |
| 879WKG.N-5 | 8 | 6 | 22 |
| 892WKG.1 | 23 | 0 | 6 |
| 892WKG.3 | 1 | 0 | 3 |
| 892WKG.4 | 1 | 0 | 1 |
| 892WKG.5 | 8 | 5 | 6 |
| 904WPG.2 | 13 | 9 | 7 |
| 904WPG.3 | 16 | 27 | 3 |
| 904WPG.5 | 77 | 32 | 17 |
| WK.2 | 137 | 18 | 91 |
| WK.2E- 1 | 0 | 0 | 19 |
| WK.4 | 55 | 6 | 25 |
To identify the best-fitting distribution, we make quantile-quantile plots of the raw data against various distributions. The more points within the confidence interval envelopes, the better the fit. Later, we present quantile-quantile plots of the model residuals to assess model fit.
#QQ plots against various distributions
set.seed(1)
par(mfrow=c(1,3))
normal <- fitdistr(log(ib$flrs+1), "normal")
qqp(log(ib$flrs+1), "norm", main="Normal")
lognormal <- fitdistr(ib$flrs+1, "lognormal")
qqp(ib$flrs+1, "lnorm", main="Log Normal")
#pois <- fitdistr(ib$flrs+1, "Poisson")
#qqp(ib$flrs, "pois", pois$estimate, main="Poisson")
#nbinom <- fitdistr(ib$flrs+1, "Negative Binomial")
#qqp(ib$flrs+1, "nbinom", size = nbinom$estimate[[1]], mu=nbinom$estimate[[2]], main="Negative Binomial")
gamma <- fitdistr(ib$flrs+1, "gamma")
qqp(ib$flrs+1, "gamma", shape = gamma$estimate[[1]], rate = gamma$estimate[[2]], main="Gamma")
ggplot(ib, aes(x = flrs, fill=species)) +
geom_histogram(data=subset(ib,species == "hook"), aes(y=-..density..),binwidth=500)+
geom_histogram(data=subset(ib,species == "kaal"), aes(y= ..density..),binwidth=500)+
coord_flip() + facet_grid(~crosstype) + labs(y="Counts", x="Inflo Bioflrs")
ggplot(aes(y=flrs, x=mompid, color=crosstype), data=ib) + geom_count(alpha=0.8) + coord_flip() + labs(x="Maternal plant", y="flrs")
Our mixed model uses one parameter to capture random effect variance, which is assumed to be homogeneous. Plotting on a log scale should uncouple variances from means to assess this visually. Subsets are species * crosstype * maternal plant.
Subset variances are not homogeneous:
ggplot(aes(y=log(flrs+1), x=sxcxm, color=crosstype), data=ib) + geom_boxplot() + coord_flip() + labs(y="ln(Inflo Bioflrs + 1)",x="Subsets")
Various distributions make different assumptions about the mean-variance (µ-Var) ratio.
grpVars <- with(ib, tapply(flrs, list(sxcxm), var))
grpMeans <- with(ib, tapply(flrs, list(sxcxm), mean))
grpCounts <- with(ib, tapply(flrs, list(sxcxm), length))
#set weight=grpCounts to weight loess by sample sizes
ggplot(na.omit(data.frame(grpMeans,grpVars,grpCounts)),
aes(x=grpMeans,y=grpVars, weight=1))+geom_point(aes(size=grpCounts))+
guides(colour=guide_legend(title="Fit"),size=guide_legend(title="Sample size")) + labs(x="Subset Mean", y="Subset Variance") + labs(subtitle="Subset: species*crosstype*mompid")
Effects and interactions in these plots are simply given by the mean, which may be unduly influenced by high values.
intplot <- ggplot(ib,aes(x=crosstype,y=flrs))+
geom_count(aes(size = ..prop.., group=sxc),alpha=0.5)+
stat_summary(aes(x=as.numeric(crosstype)),fun.y=mean,geom="line")+ facet_grid(~species)
intplot + aes(group=species, color=species)
intplot + aes(group=mompop, color=mompop)
intplot + aes(group=mompid, color=mompop)
intplot + aes(group=dadpop, color=dadpop)
Run many generalized linear models on subsets of the data defined by crosstype | mompid to see if effects estimates are consistent within maternal plants.
Most maternal plant subsets agree, but some are problematic outliers. These plants can be picked out visually from the random effects interaction plot above, the estimated parameters of each subset model, and the QQ plot of the estimated parameters:
#had to get rid of species or mompid since mompid is nested inside species. dadpop also works
glm.lis <- lmList(log(flrs)~crosstype|mompid,data=ib, family="gaussian")
plot.lmList(glm.lis,scale=list(x=list(relation="free")))
Loading required package: reshape
Attaching package: 'reshape'
The following objects are masked from 'package:plyr':
rename, round_any
The following object is masked from 'package:Matrix':
expand
Using grp as id variables
qqmath.lmList(glm.lis)#
Using as id variables
We constructed the following models with the package glmmADMB. They all have the same fixed effects, species x crosstype, and response variable, log10(flrs)
| Distribution, Random Effects: | None | Maternal plant | Maternal population |
|---|---|---|---|
| normal (norm) | X | X | X |
#Normal (Gaussian) distribution, identity link
ib <- ib[!is.na(ib$collect.date),]
# weights=1/ib$seflrs
sc.norm.l <- lm(log10(flrs)~species*crosstype+collect.date, data=ib)
sc.mix.mompid.l <- lmer(log10(flrs)~species*crosstype+collect.date + (1|mompid), data=ib)
sc.nd.mix.momdadpid.l <- lmer(log10(flrs)~species*crosstype + (1|mompid)+ (1|dadpid), data=ib)
sc.mix.mompop.l <- lmer(log10(flrs)~species*crosstype+collect.date + (1|mompop), data=ib)
sc.mix.momdadpid.l <- lmer(log10(flrs)~species*crosstype+collect.date + (1|mompid) + (1|dadpid), data=ib)
sc.mix.momdadpop.l <- lmer(log10(flrs)~species*crosstype+collect.date + (1|mompop) + (1|dadpop), data=ib)
We will use the Aikake Information Criterion to pick the model the best fits the data, penalized by the number of parameters. Differences of 2 units are significant.
sc.names <- c("sc.norm.l","sc.mix.mompid.l","sc.mix.mompop.l","sc.mix.momdadpid.l","sc.mix.momdadpop.l")
sc.list <- sapply(sc.names, get, USE.NAMES=T)
sc.AIC <- ICtab(sc.list,mnames=sc.names,type="AIC", base=T, delta=F) # for AICc, nobs=nobs(sc.list[[1]])
class(sc.AIC)<-"data.frame"
all.names <- c(sc.names)
all.list <- sapply(all.names, get, USE.NAMES=T)
all.AIC <- dfun(rbind(sc.AIC))
all.AIC <- all.AIC[order(all.AIC$dAIC),]
kable(all.AIC, format.arg=list(digits=3))
| dAIC | df | |
|---|---|---|
| sc.norm.l | 0.0 | 8 |
| sc.mix.mompid.l | 34.9 | 9 |
| sc.mix.momdadpid.l | 35.4 | 10 |
| sc.mix.momdadpop.l | 38.0 | 10 |
| sc.mix.mompop.l | 40.0 | 9 |
The best-fiting model is a linear model with the following components:
Looking at the normal, fixed effects model, we see that the residuals are not normal:
shapiro.test(sc.norm.l$residuals)#raw residuals!
Shapiro-Wilk normality test
data: sc.norm.l$residuals
W = 0.93352, p-value < 2.2e-16
The coefficients estimated for each model agree qualitatively.
sc.log.names <- sc.names
sc.log <- sapply(sc.log.names, get, USE.NAMES=T)
coefplot2(sc.log, legend.x="topright",legend=T,legend.args=list(cex=0.8, xpd=T, inset=c(-0.1,0)), col.pts=sample(gg_color_hue(length(sc.log.names))), spacing=0.05, lwd.2=2, lwd.1=4, intercept=F)
We chose the model with nearly the best (lowest) AIC, to carry out inference tests and parameter estimation.
mod <- sc.mix.momdadpid.l
print(mod)
Linear mixed model fit by REML ['lmerMod']
Formula:
log10(flrs) ~ species * crosstype + collect.date + (1 | mompid) +
(1 | dadpid)
Data: ib
REML criterion at convergence: 1547.87
Random effects:
Groups Name Std.Dev.
dadpid (Intercept) 0.04882
mompid (Intercept) 0.08912
Residual 0.51282
Number of obs: 997, groups: dadpid, 23; mompid, 21
Fixed Effects:
(Intercept) specieskaal
3.223588 0.572270
crosstypewithin crosstypehybrid
-0.044547 0.659749
collect.date specieskaal:crosstypewithin
-0.002634 -0.016366
specieskaal:crosstypehybrid
-0.721010
Using a likelihood ratio test, with a null hypothesis of zero variance, the random effect (maternal plant) is not significant:
anova(sc.norm.l, sc.mix.momdadpid.l) #double this p-value. or simulate null by permuting data.
By dropping it from the model and performing a likelihood-ratio test, we see that the species x crosstype interaction is significant for the count model but not the binary model:
sxc.chisq <- drop1(mod, test="Chisq") #load from file
dfun(sxc.chisq)
Single term deletions
Model:
log10(flrs) ~ species * crosstype + collect.date + (1 | mompid) +
(1 | dadpid)
Df dAIC LRT Pr(Chi)
<none> 0.000
collect.date 1 13.517 15.517 8.175e-05 ***
species:crosstype 2 22.493 26.493 1.767e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The model estimated the following parameters, with individual parameter significance determined by the Wald z-test, and fixed effect significance determined by analysis of deviance Wald test.
summary(mod)
Linear mixed model fit by REML ['lmerMod']
Formula:
log10(flrs) ~ species * crosstype + collect.date + (1 | mompid) +
(1 | dadpid)
Data: ib
REML criterion at convergence: 1547.9
Scaled residuals:
Min 1Q Median 3Q Max
-4.5275 -0.5074 0.1988 0.6919 1.8619
Random effects:
Groups Name Variance Std.Dev.
dadpid (Intercept) 0.002384 0.04882
mompid (Intercept) 0.007942 0.08912
Residual 0.262984 0.51282
Number of obs: 997, groups: dadpid, 23; mompid, 21
Fixed effects:
Estimate Std. Error t value
(Intercept) 3.2235879 0.2231008 14.449
specieskaal 0.5722702 0.0743359 7.698
crosstypewithin -0.0445469 0.0712783 -0.625
crosstypehybrid 0.6597495 0.0514799 12.816
collect.date -0.0026343 0.0006669 -3.950
specieskaal:crosstypewithin -0.0163657 0.1012888 -0.162
specieskaal:crosstypehybrid -0.7210103 0.1039637 -6.935
Correlation of Fixed Effects:
(Intr) spcskl crsstypw crsstyph cllct. spcskl:crsstypw
specieskaal -0.078
crsstypwthn -0.070 0.215
crsstyphybr -0.013 0.473 0.322
collect.dat -0.972 -0.091 -0.002 -0.122
spcskl:crsstypw 0.036 -0.342 -0.707 -0.239 0.016
spcskl:crsstyph 0.019 -0.498 -0.155 -0.597 0.062 0.253
Anova(mod, type=3)
Analysis of Deviance Table (Type III Wald chisquare tests)
Response: log10(flrs)
Chisq Df Pr(>Chisq)
(Intercept) 208.774 1 < 2.2e-16 ***
species 59.266 1 1.377e-14 ***
crosstype 189.367 2 < 2.2e-16 ***
collect.date 15.604 1 7.810e-05 ***
species:crosstype 50.798 2 9.319e-12 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
These are box and QQ (to check normality) plots of the estimated random effect of each maternal plant.
predre <- setNames(data.frame(RE=ranef(mod)$mompid,SD=ranef(mod, sd=T)$`1`),c("RE","SD"))
ggplot(predre, aes(x = rownames(predre),y=RE)) +
geom_point(size = 2) + coord_flip()+
geom_errorbar(aes(ymin = RE-SD, ymax = RE+SD)) + labs(x="Maternal plants", y="Predicted random effects")
#Count
reStack <- ldply(ranef(mod))
print( qqmath( ~`(Intercept)`|.id, data=reStack, scales=list(relation="free"),
prepanel = prepanel.qqmathline,
panel = function(x, ...) {
panel.qqmathline(x, ...)
panel.qqmath(x, ...)
},
layout=c(1,1)))
The least square means procedure can generate predictor estimates of each type, and give their significance groupings with a post-hoc Tukey test. S. hookeri-produced hybrids produce less Inflo Bioflrs than either crosses between or within S. hookeri populations. The other differences are not significant, but remember that the fixed effect of hybrid (vs. between) was significant (model summary).
#Count
rg <- ref.grid(sc.nd.mix.momdadpid.l)
Loading required namespace: lmerTest
#summary(rg)
sxc.lsm <- lsmeans(rg, ~ crosstype*species)
plot(sxc.lsm)
options(digits=4)
cld.mod <- cld(sxc.lsm, Letters=letters) #tukey letterings
cld.mod$response <- 10 ^ cld.mod$lsmean
cld.mod$uSE <- 10 ^ (cld.mod$lsmean+cld.mod$SE)
cld.mod$lSE <- 10 ^ (cld.mod$lsmean-cld.mod$SE)
cld.mod[rev(order(cld.mod$species, cld.mod$crosstype)),]
crosstype species lsmean SE df lower.CL upper.CL .group response
hybrid kaal 2.853 0.07984 97.15 2.695 3.012 b 713.5
within kaal 2.859 0.07098 45.81 2.716 3.002 b 722.8
between kaal 2.913 0.05175 24.92 2.806 3.019 b 818.0
hybrid hook 3.003 0.04781 12.47 2.900 3.107 b 1007.8
within hook 2.323 0.07459 57.88 2.174 2.473 a 210.6
between hook 2.369 0.05217 13.50 2.257 2.481 a 234.0
uSE lSE
857.5 593.6
851.1 613.8
921.5 726.1
1125.0 902.7
250.1 177.4
263.8 207.5
Degrees-of-freedom method: satterthwaite
Results are given on the log10 (not the response) scale.
Confidence level used: 0.95
P value adjustment: tukey method for comparing a family of 6 estimates
significance level used: alpha = 0.05
H.wb <- with(cld.mod[cld.mod$species=="hook",], response[crosstype=="within"]/response[crosstype=="between"] - 1)
K.wb <- with(cld.mod[cld.mod$species=="kaal",], response[crosstype=="within"]/response[crosstype=="between"] - 1)
K.H <- with(cld.mod[cld.mod$crosstype=="between",], response[species=="kaal"]/response[species=="hook"] - 1)
maxsp <- ifelse(K.H>0, "kaal","hook")
minsp <- ifelse(K.H<0, "kaal","hook")
maxresp <- with(cld.mod, response[species==maxsp & crosstype=="between"])
minresp <- with(cld.mod, response[species==minsp & crosstype=="between"])
HK.resp <- with(cld.mod, response[species=="hook" & crosstype=="hybrid"])
KH.resp <- with(cld.mod, response[species=="kaal" & crosstype=="hybrid"])
HK.int <- with(cld.mod, ifelse(HK.resp > minresp & HK.resp < maxresp, (HK.resp-minresp)/(maxresp-minresp),
ifelse(HK.resp < minresp, HK.resp/minresp-1, HK.resp/maxresp-1)))
KH.int <- with(cld.mod, ifelse(KH.resp > minresp & KH.resp < maxresp, (KH.resp-minresp)/(maxresp-minresp),
ifelse(KH.resp < minresp, KH.resp/minresp-1, KH.resp/maxresp-1)))
intermed <- (minresp + maxresp) / 2
with(ib, wilcox.test(ib[species=="kaal" & crosstype=="hybrid","flrs"], mu=intermed))
Wilcoxon signed rank test with continuity correction
data: ib[species == "kaal" & crosstype == "hybrid", "flrs"]
V = 1300, p-value = 6e-05
alternative hypothesis: true location is not equal to 526
with(ib, wilcox.test(ib[species=="hook" & crosstype=="hybrid","flrs"], mu=intermed))
Wilcoxon signed rank test with continuity correction
data: ib[species == "hook" & crosstype == "hybrid", "flrs"]
V = 42000, p-value <2e-16
alternative hypothesis: true location is not equal to 526
round(c(H.wb,K.wb,K.H,HK.int,KH.int),2)
[1] -0.10 -0.12 2.50 0.23 0.82
ggplot(as.data.frame(cld.mod), aes(y=response, x=relevel(crosstype, "within"), fill=species)) +
geom_col(position=position_dodge2()) +
geom_linerange(aes(ymin=lSE, ymax=uSE), position=position_dodge(0.9)) +
labs(x="", y="Flowers",fill="Maternal species") +
scale_fill_manual(labels = c("S. hookeri ", "S. kaalae "), values=brewer.pal(name="Set1", n=3)[c(3,2)]) +
scale_x_discrete(labels = c("Intrapopulation", "Interpopulation", "Hybrid")) +
geom_text(aes(label=.group), position=position_dodge(0.9), hjust=0, vjust=-1) +
scale_y_continuous(expand = expand_scale(add=c(0,0)), breaks = scales::pretty_breaks(n = 5)) +
theme_classic() + theme(legend.text=element_text(face="italic", size=rel(1)), legend.position="bottom", axis.text = element_text(colour="black", size=rel(1)), text=element_text(size=14), axis.ticks.x = element_blank()) + geom_segment(aes(x=2.5, y=intermed, xend=3.5, yend=intermed))