Se encontro que en los muestreos, los datos de Hormigas del hormiguero 1 (x=0.00785±0.00955,n=90), hormiguero 2 (x=0.00690±0.00340, n=90), hormiguero 3 (x=0.00725±0.01080, n=90) y hormiguero4(x=0.0040±0.00457, n=90); tienen una distribucion normaled los residuos (p-value<0.05) y una igualdad de las varianzas no significativa (p-value=0.3). Segin la prueba de Fisher tienen ldiferencias significativas (F=7.09, gl=356, p<0.05)
library(readr)
datosh <- read_delim("C:/Users/una/Desktop/datosh1.csv", ";", escape_double = FALSE, trim_ws = TRUE)
## Parsed with column specification:
## cols(
## Hormiga = col_double(),
## Hoja = col_double(),
## Propor = col_double(),
## Hormiguero = col_character(),
## Muestreo = col_character(),
## Temperatura = col_integer(),
## Distancia = col_double()
## )
attach(datosh)
tapply(datosh$Hormiga, datosh$Hormiguero, length)
## H1 H2 H3 H4
## 90 90 90 90
tapply(datosh$Hormiga, datosh$Hormiguero, median)
## H1 H2 H3 H4
## 0.00785 0.00690 0.00725 0.00440
tapply(datosh$Hormiga, datosh$Hormiguero, sd)
## H1 H2 H3 H4
## 0.009553809 0.003404704 0.010803538 0.004567322
shapiro.test(datosh$Hormiga)
##
## Shapiro-Wilk normality test
##
## data: datosh$Hormiga
## W = 0.53855, p-value < 2.2e-16
shapiro.test(datosh$Hoja)
##
## Shapiro-Wilk normality test
##
## data: datosh$Hoja
## W = 0.73286, p-value < 2.2e-16
shapiro.test(datosh$Propor)
##
## Shapiro-Wilk normality test
##
## data: datosh$Propor
## W = 0.40204, p-value < 2.2e-16
str(datosh)
## Classes 'tbl_df', 'tbl' and 'data.frame': 360 obs. of 7 variables:
## $ Hormiga : num 0.004 0.06 0.009 0.01 0.0073 0.0179 0.0168 0.0162 0.0041 0.0111 ...
## $ Hoja : num 0.0185 0.0068 0.0635 0.0329 0.0356 0.0508 0.0978 0.0974 0.031 0.0105 ...
## $ Propor : num 462.5 11.3 705.6 329 487.7 ...
## $ Hormiguero : chr "H1" "H1" "H1" "H1" ...
## $ Muestreo : chr "n1" "n1" "n1" "n1" ...
## $ Temperatura: int 20 20 20 20 20 20 20 20 20 20 ...
## $ Distancia : num 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 ...
## - attr(*, "spec")=List of 2
## ..$ cols :List of 7
## .. ..$ Hormiga : list()
## .. .. ..- attr(*, "class")= chr "collector_double" "collector"
## .. ..$ Hoja : list()
## .. .. ..- attr(*, "class")= chr "collector_double" "collector"
## .. ..$ Propor : list()
## .. .. ..- attr(*, "class")= chr "collector_double" "collector"
## .. ..$ Hormiguero : list()
## .. .. ..- attr(*, "class")= chr "collector_character" "collector"
## .. ..$ Muestreo : list()
## .. .. ..- attr(*, "class")= chr "collector_character" "collector"
## .. ..$ Temperatura: list()
## .. .. ..- attr(*, "class")= chr "collector_integer" "collector"
## .. ..$ Distancia : list()
## .. .. ..- attr(*, "class")= chr "collector_double" "collector"
## ..$ default: list()
## .. ..- attr(*, "class")= chr "collector_guess" "collector"
## ..- attr(*, "class")= chr "col_spec"
names(datosh)
## [1] "Hormiga" "Hoja" "Propor" "Hormiguero" "Muestreo"
## [6] "Temperatura" "Distancia"
aov(Hormiga~Hormiguero, data = datosh)->anova1
summary(anova1)
## Df Sum Sq Mean Sq F value Pr(>F)
## Hormiguero 3 0.001279 0.0004263 7.092 0.000122 ***
## Residuals 356 0.021400 0.0000601
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
shapiro.test(anova1$residuals)
##
## Shapiro-Wilk normality test
##
## data: anova1$residuals
## W = 0.53019, p-value < 2.2e-16
fligner.test(Hormiga~as.factor(Hormiguero), data = datosh)
##
## Fligner-Killeen test of homogeneity of variances
##
## data: Hormiga by as.factor(Hormiguero)
## Fligner-Killeen:med chi-squared = 3.7788, df = 3, p-value = 0.2864