Data Summary

Column

Data information

UNIVERSITY GPA TOEFL GRE MAJOR ACADEMIC YEAR ID
985 4.00 105 325 STAT 2015 1
211 3.80 105 329 STAT 2015 2
211 3.89 105 330 NOT_STAT 2015 3
OTHER 3.80 100 316 NOT_STAT 2015 4
985 4.00 104 329 NOT_STAT 2015 5
USA 3.84 104 323 STAT 2015 6
OTHER 3.58 88 312 STAT 2015 7
OTHER 3.85 100 321 STAT 2015 8
OTHER 3.30 99 321 STAT 2015 9
985 3.55 108 335 STAT 2015 10
211 3.12 102 320 STAT 2015 11
USA 3.41 104 310 NOT_STAT 2015 12
985 3.88 102 324 STAT 2015 13
211 3.52 101 319 STAT 2015 14
211 3.60 104 323 STAT 2015 15
USA 3.78 104 325 STAT 2015 16
USA 3.72 104 325 STAT 2015 17
USA 3.55 104 322 STAT 2015 18
C9 3.75 109 325 STAT 2015 19
C9 3.00 106 319 STAT 2015 20
C9 3.28 97 318 STAT 2015 21
USA 3.70 104 310 STAT 2015 22
OTHER 3.86 113 327 NOT_STAT 2015 23
USA 3.41 104 325 STAT 2015 24
USA 3.52 104 321 NOT_STAT 2015 25
211 3.42 83 322 STAT 2015 26
USA 3.91 104 318 NOT_STAT 2015 27
USA 3.60 104 318 STAT 2015 28
985 3.60 102 324 STAT 2015 29
C9 3.65 96 320 STAT 2015 30
211 3.83 105 330 NOT_STAT 2015 31
211 3.80 105 326 STAT 2015 32
985 3.88 102 322 NOT_STAT 2015 33
211 3.60 101 322 STAT 2015 34
C9 3.80 106 326 STAT 2015 35
C9 3.70 100 323 STAT 2015 36
USA 3.30 104 322 NOT_STAT 2015 37
985 3.70 107 328 STAT 2015 38
211 3.54 99 324 NOT_STAT 2015 39
985 3.90 105 327 STAT 2015 40
211 3.87 115 327 STAT 2015 41
USA 3.96 104 329 STAT 2015 42
USA 3.52 104 321 NOT_STAT 2015 43
985 3.90 104 323 STAT 2015 44
USA 3.79 104 319 STAT 2015 45
C9 3.90 108 323 STAT 2015 46
C9 3.89 107 325 STAT 2015 47
211 3.50 100 322 STAT 2015 48
C9 2.91 94 312 NOT_STAT 2015 49
985 3.90 105 323 STAT 2015 50
OTHER 3.97 108 330 STAT 2015 51
C9 3.63 103 324 STAT 2015 52
211 3.77 101 323 NOT_STAT 2015 53
211 3.60 101 322 STAT 2015 54
OTHER 3.90 112 327 STAT 2015 55
USA 3.60 104 318 STAT 2015 56
985 3.73 103 324 STAT 2015 57
985 3.80 116 329 NOT_STAT 2015 58
985 3.44 106 319 STAT 2015 59
211 3.75 104 326 STAT 2015 60
OTHER 3.79 102 322 STAT 2015 61
211 3.61 101 320 STAT 2015 62
USA 4.00 104 326 STAT 2015 63
211 3.53 106 322 STAT 2015 64
211 3.65 100 323 STAT 2015 65
C9 3.81 111 330 STAT 2015 66
985 3.88 102 322 STAT 2015 67
USA 3.62 91 318 STAT 2015 68
211 3.46 105 326 STAT 2015 69
985 3.31 103 323 STAT 2015 70
USA 3.93 104 325 STAT 2015 71
C9 3.64 111 328 NOT_STAT 2015 72
211 3.87 115 327 STAT 2015 73
211 3.60 102 323 STAT 2015 74
USA 3.70 107 325 STAT 2015 75
211 3.94 117 329 STAT 2015 76
211 3.78 100 323 STAT 2015 77
USA 3.93 104 317 STAT 2015 78
OTHER 3.86 113 327 NOT_STAT 2015 79
USA 3.96 104 329 STAT 2015 80
985 3.42 96 323 STAT 2015 81
C9 3.94 113 329 STAT 2015 82
211 3.98 109 330 STAT 2015 83
C9 3.70 100 322 STAT 2015 84
211 3.90 NA 327 NOT_STAT 2015 85
USA 4.00 104 320 STAT 2015 86
C9 3.93 103 319 STAT 2015 87
USA 3.80 104 319 STAT 2015 88
USA 3.98 104 329 STAT 2015 89
USA 3.50 104 318 STAT 2015 90
985 3.72 105 327 STAT 2015 91
USA 3.64 104 318 STAT 2015 92
USA 3.89 104 320 STAT 2015 93
985 3.90 105 327 STAT 2015 94
USA 4.00 104 320 STAT 2015 95
USA 3.85 104 326 STAT 2015 96
985 3.58 103 322 NOT_STAT 2015 97
985 3.35 95 323 STAT 2015 98
211 3.67 100 319 STAT 2015 99
211 3.70 98 321 STAT 2015 100
985 3.35 91 317 NOT_STAT 2015 101
211 3.78 100 323 NOT_STAT 2015 102
211 3.38 93 329 STAT 2015 103
985 3.26 97 322 STAT 2015 104
211 3.94 117 329 STAT 2015 105
985 3.90 109 329 STAT 2015 106
C9 3.56 105 320 STAT 2015 107
211 3.65 100 323 STAT 2015 108
USA 3.51 104 333 STAT 2015 109
USA 3.63 104 317 STAT 2015 110
211 3.50 100 322 STAT 2015 111
USA 3.90 104 322 STAT 2015 112
211 3.88 105 326 NOT_STAT 2015 113
C9 3.89 107 325 STAT 2015 114
211 3.60 101 327 STAT 2015 115
USA 3.41 104 325 STAT 2015 116
211 3.90 111 327 STAT 2015 117
C9 3.40 105 326 STAT 2015 118
USA 3.50 104 329 STAT 2015 119
985 3.72 102 323 STAT 2015 120
211 3.87 115 327 STAT 2015 121
211 3.57 100 319 NOT_STAT 2015 122
211 3.65 100 323 STAT 2015 123
USA 3.79 107 329 STAT 2015 124
985 3.90 105 323 STAT 2015 125
C9 3.60 107 327 STAT 2015 126
USA 3.80 104 318 STAT 2015 127
985 3.80 109 328 STAT 2015 128
USA 3.98 104 329 STAT 2015 129
211 3.42 107 319 STAT 2015 130
211 3.34 104 327 STAT 2015 131
211 3.68 106 320 STAT 2015 132
USA 3.86 104 319 NOT_STAT 2015 133
985 3.42 89 316 STAT 2015 134
985 3.66 98 324 STAT 2015 135
211 3.34 104 327 STAT 2015 136
C9 3.31 106 325 NOT_STAT 2015 137
USA 3.96 102 319 STAT 2015 138
211 3.83 105 330 NOT_STAT 2015 139
C9 3.72 105 327 STAT 2015 140
C9 3.41 105 326 NOT_STAT 2015 141
211 3.70 100 322 STAT 2015 142
C9 3.35 105 326 NOT_STAT 2015 143
USA 3.95 104 320 STAT 2015 144
OTHER 3.84 102 327 STAT 2015 145
C9 3.67 109 326 STAT 2015 146
USA 3.31 104 319 STAT 2015 147
211 3.40 101 324 NOT_STAT 2015 148
C9 3.65 106 323 STAT 2015 149
USA 3.80 104 322 NOT_STAT 2015 150
OTHER 3.71 112 317 STAT 2015 151
985 3.00 83 305 STAT 2015 152
USA 3.89 104 320 NOT_STAT 2015 153
USA 3.91 104 327 NOT_STAT 2015 154
211 3.80 100 322 NOT_STAT 2015 155
985 3.60 110 328 STAT 2015 156
USA 3.98 102 322 STAT 2015 157
211 3.61 101 320 STAT 2015 158
211 3.45 105 323 STAT 2015 159
OTHER 3.88 98 323 NOT_STAT 2015 160
USA 3.76 104 325 NOT_STAT 2015 161
211 3.40 102 324 STAT 2015 162
USA 3.86 104 323 STAT 2015 163
985 3.60 102 324 STAT 2015 164
USA 3.60 104 327 STAT 2015 165
211 3.90 106 325 STAT 2015 166
985 3.32 102 318 STAT 2015 167
211 3.81 103 323 STAT 2015 168
211 3.88 105 326 STAT 2015 169
USA 3.87 104 331 STAT 2015 170
USA 3.55 104 328 STAT 2015 171
USA 3.20 104 322 NOT_STAT 2015 172
USA 3.40 104 311 NOT_STAT 2015 173
211 3.45 105 323 STAT 2015 174
985 3.26 107 320 NOT_STAT 2015 175
985 3.42 96 323 STAT 2015 176
211 3.86 110 320 NOT_STAT 2015 177
C9 3.40 102 327 STAT 2015 178
211 3.89 105 330 NOT_STAT 2015 179
211 3.43 83 322 STAT 2015 180
C9 3.65 106 323 STAT 2015 181
985 3.43 103 328 STAT 2015 182
C9 3.94 103 326 STAT 2015 183
985 3.90 105 327 STAT 2015 184
USA 3.30 104 309 NOT_STAT 2015 185
USA 3.87 104 331 STAT 2015 186
USA 3.89 104 320 STAT 2015 187
985 3.90 96 321 NOT_STAT 2015 188
211 3.60 102 323 STAT 2015 189
985 3.72 95 321 STAT 2015 190
211 3.30 105 323 STAT 2015 191
211 3.74 101 323 NOT_STAT 2015 192
USA 3.98 104 329 STAT 2015 193
USA 3.85 104 319 NOT_STAT 2015 194
USA 3.99 104 323 STAT 2016 195
C9 3.90 106 322 STAT 2016 196
C9 3.51 105 327 STAT 2016 197
985 3.72 111 324 STAT 2016 198
211 3.70 99 317 STAT 2016 199
211 3.40 85 319 STAT 2016 200
C9 3.63 100 316 STAT 2016 201
211 3.30 95 312 STAT 2016 202
C9 3.94 106 329 NOT_STAT 2016 203
985 3.24 95 317 STAT 2016 204
211 3.66 92 318 STAT 2016 205
OTHER 3.79 102 319 STAT 2016 206
985 3.50 104 323 STAT 2016 207
985 3.80 102 320 STAT 2016 208
C9 3.77 111 326 STAT 2016 209
985 3.57 108 323 STAT 2016 210
985 3.60 103 320 STAT 2016 211
985 3.92 99 316 NOT_STAT 2016 212
OTHER 3.96 99 314 STAT 2016 213
C9 3.60 106 324 NOT_STAT 2016 214
USA 3.70 104 323 STAT 2016 215
C9 3.82 101 325 STAT 2016 216
C9 3.91 111 331 STAT 2016 217
C9 3.75 109 331 STAT 2016 218
211 3.80 106 322 STAT 2016 219
USA 3.50 104 318 NOT_STAT 2016 220
985 3.60 103 319 STAT 2016 221
211 3.90 106 325 STAT 2016 222
C9 3.67 98 322 STAT 2016 223
OTHER 3.85 101 322 STAT 2016 224
OTHER 3.40 92 311 STAT 2016 225
211 3.60 104 324 NOT_STAT 2016 226
211 3.38 109 327 STAT 2016 227
USA 3.93 104 313 STAT 2016 228
OTHER 3.28 94 315 STAT 2016 229
211 3.90 104 325 NOT_STAT 2016 230
C9 3.65 104 332 STAT 2016 231
211 3.67 108 322 STAT 2016 232
C9 3.83 97 321 NOT_STAT 2016 233
985 3.72 111 325 STAT 2016 234
C9 3.30 103 323 NOT_STAT 2016 235
C9 3.72 104 322 NOT_STAT 2016 236
USA 3.40 104 310 NOT_STAT 2016 237
USA 3.00 104 317 STAT 2016 238
USA 3.80 104 320 STAT 2016 239
USA 3.86 104 320 STAT 2016 240
USA 3.80 104 325 STAT 2016 241
USA 3.51 102 320 STAT 2016 242
985 3.90 103 330 NOT_STAT 2016 243
985 3.91 111 328 STAT 2016 244
985 3.76 106 322 NOT_STAT 2016 245
OTHER 3.90 103 324 NOT_STAT 2016 246
C9 3.60 101 318 STAT 2016 247
OTHER 3.90 100 318 STAT 2016 248
211 3.38 109 327 STAT 2016 249
985 3.76 106 322 NOT_STAT 2016 250
985 3.90 106 323 STAT 2016 251
211 3.70 99 317 STAT 2016 252
211 3.60 96 322 NOT_STAT 2016 253
USA 3.36 104 324 NOT_STAT 2016 254
211 3.78 105 324 STAT 2016 255
C9 3.50 100 322 STAT 2016 256
985 3.72 111 324 STAT 2016 257
211 3.80 106 322 STAT 2016 258
211 3.55 102 318 STAT 2016 259
C9 3.34 94 319 STAT 2016 260
OTHER 3.40 102 316 STAT 2016 261
OTHER 3.30 88 320 STAT 2016 262
211 3.03 91 314 STAT 2016 263
211 3.76 104 322 STAT 2016 264
211 3.90 104 325 STAT 2016 265
211 3.43 86 314 NOT_STAT 2016 266
985 3.60 104 320 STAT 2016 267
211 3.50 106 325 STAT 2016 268
985 3.50 90 321 NOT_STAT 2016 269
985 3.60 105 329 STAT 2016 270
211 3.65 101 327 STAT 2016 271
211 3.86 100 326 STAT 2016 272
C9 3.69 102 330 NOT_STAT 2016 273
211 3.60 107 319 NOT_STAT 2016 274
C9 3.63 109 333 STAT 2016 275
USA 3.85 104 324 NOT_STAT 2016 276
USA 3.69 104 324 STAT 2016 277
985 3.50 104 323 STAT 2016 278
C9 3.00 109 323 STAT 2016 279
C9 3.66 109 325 NOT_STAT 2016 280
USA 3.89 104 319 STAT 2016 281
985 3.72 111 325 STAT 2016 282
USA 3.36 104 324 NOT_STAT 2016 283
211 3.70 103 322 STAT 2016 284
C9 3.94 106 329 NOT_STAT 2016 285
OTHER 3.90 113 332 STAT 2016 286
211 3.72 105 328 STAT 2016 287
985 3.70 104 325 STAT 2016 288
C9 3.91 111 331 STAT 2016 289
211 3.90 106 327 NOT_STAT 2016 290
C9 3.63 109 333 STAT 2016 291
C9 3.50 103 327 STAT 2016 292
985 3.50 104 323 STAT 2016 293
C9 3.80 104 322 STAT 2016 294
985 3.97 110 330 STAT 2016 295
C9 3.90 106 324 STAT 2016 296
985 3.70 102 323 STAT 2016 297
985 3.90 104 325 STAT 2016 298
OTHER 3.25 82 303 STAT 2016 299
USA 3.90 104 320 STAT 2016 300
USA 3.86 104 329 STAT 2016 301
211 3.38 93 315 STAT 2016 302
USA 3.83 104 330 NOT_STAT 2016 303
USA 3.60 104 303 STAT 2016 304
211 3.70 103 324 STAT 2016 305
USA 3.44 104 320 NOT_STAT 2016 306
OTHER 3.85 109 325 STAT 2016 307
985 3.34 100 327 NOT_STAT 2016 308
USA 3.97 104 331 STAT 2016 309
985 3.07 97 316 STAT 2016 310
985 3.45 102 327 NOT_STAT 2016 311
USA 3.85 104 316 STAT 2016 312
985 3.95 95 321 NOT_STAT 2016 313
USA 3.65 104 325 NOT_STAT 2016 314
C9 3.67 98 322 STAT 2016 315
C9 3.81 111 325 STAT 2016 316
985 3.80 104 324 STAT 2016 317
985 3.97 110 330 STAT 2016 318
985 3.65 104 332 STAT 2016 319
211 3.75 102 327 STAT 2016 320
985 3.50 104 323 STAT 2016 321
985 3.60 107 324 STAT 2016 322
OTHER 3.90 102 320 STAT 2016 323
211 3.90 105 329 NOT_STAT 2016 324
211 3.47 104 329 NOT_STAT 2016 325
USA 3.60 104 317 STAT 2016 326
USA 3.89 104 316 STAT 2016 327
USA 3.99 104 323 STAT 2016 328
USA 2.90 104 323 STAT 2016 329
USA 3.98 104 322 STAT 2016 330
USA 3.90 104 320 STAT 2016 331
USA 3.99 104 323 STAT 2016 332
211 3.30 95 312 STAT 2016 333
211 3.88 105 329 NOT_STAT 2016 334
985 3.60 107 324 STAT 2016 335
985 3.76 106 322 NOT_STAT 2016 336
985 3.90 104 323 STAT 2016 337
OTHER 3.90 103 328 NOT_STAT 2016 338
C9 3.82 104 322 STAT 2016 339
USA 3.90 104 326 NOT_STAT 2016 340
985 3.55 103 315 STAT 2016 341
C9 3.73 108 326 NOT_STAT 2016 342
USA 3.90 110 324 STAT 2016 343
USA 3.70 104 325 STAT 2016 344
USA 3.80 104 315 STAT 2016 345
C9 3.92 94 321 STAT 2016 346
USA 3.75 104 315 STAT 2016 347
985 3.70 104 325 STAT 2016 348
985 3.80 101 323 STAT 2016 349
985 3.50 104 323 STAT 2016 350
C9 3.35 110 326 NOT_STAT 2016 351
USA 3.85 104 316 STAT 2016 352
USA 3.97 104 331 STAT 2016 353
C9 3.90 106 322 STAT 2016 354
C9 3.90 106 326 STAT 2016 355
C9 3.90 104 326 STAT 2016 356
C9 3.10 105 323 STAT 2016 357
C9 3.98 110 327 NOT_STAT 2016 358
USA 3.91 108 321 STAT 2016 359
C9 3.94 106 329 NOT_STAT 2016 360
985 3.80 100 331 STAT 2016 361
985 3.80 111 326 STAT 2016 362
211 3.70 106 324 STAT 2016 363
211 3.90 105 329 NOT_STAT 2016 364
C9 3.67 98 322 STAT 2016 365
C9 3.92 115 331 STAT 2016 366
985 3.90 104 325 STAT 2016 367
USA 3.89 104 324 STAT 2016 368
985 3.90 115 331 STAT 2016 369
211 3.90 106 322 STAT 2016 370
985 3.51 107 327 NOT_STAT 2016 371
USA 3.97 104 322 STAT 2016 372
211 3.67 108 322 STAT 2016 373
USA 3.65 104 325 NOT_STAT 2016 374
USA 3.30 110 325 NOT_STAT 2016 375
C9 3.65 113 326 STAT 2016 376
C9 3.74 100 320 STAT 2016 377
C9 3.63 100 316 STAT 2016 378
985 3.88 102 321 NOT_STAT 2016 379
C9 3.70 101 321 STAT 2016 380
USA 3.50 104 332 STAT 2016 381
211 3.30 104 317 NOT_STAT 2016 382
C9 3.52 102 324 STAT 2016 383
OTHER 2.79 96 321 NOT_STAT 2016 384
OTHER 3.43 106 323 STAT 2017 385
USA 3.54 104 323 STAT 2017 386
211 3.75 109 327 NOT_STAT 2017 387
211 3.91 93 315 STAT 2017 388
985 3.85 104 332 STAT 2017 389
C9 3.30 103 323 NOT_STAT 2017 390
C9 3.20 101 323 STAT 2017 391
USA 3.60 104 326 STAT 2017 392
USA 3.90 106 326 NOT_STAT 2017 393
985 3.70 110 325 NOT_STAT 2017 394
OTHER 3.27 101 318 STAT 2017 395
985 3.80 100 328 STAT 2017 396
211 3.81 102 327 STAT 2017 397
USA 3.70 104 325 STAT 2017 398
C9 3.77 103 320 NOT_STAT 2017 399
211 3.40 101 325 NOT_STAT 2017 400
211 3.90 101 323 STAT 2017 401
C9 3.81 108 330 NOT_STAT 2017 402
C9 3.68 104 325 STAT 2017 403
USA 3.63 104 326 STAT 2017 404
985 3.30 100 319 STAT 2017 405
USA 3.70 104 321 NOT_STAT 2017 406
211 3.90 106 322 STAT 2017 407
211 3.78 100 321 STAT 2017 408
USA 3.89 104 320 STAT 2017 409
C9 3.98 106 325 NOT_STAT 2017 410
OTHER 3.85 99 321 NOT_STAT 2017 411
USA 3.80 104 318 STAT 2017 412
USA 3.91 104 325 STAT 2017 413
USA 3.88 116 332 STAT 2017 414
C9 3.90 104 324 STAT 2017 415
C9 3.54 105 325 STAT 2017 416
985 3.60 101 323 STAT 2017 417
985 3.90 111 331 STAT 2017 418
C9 3.77 112 334 STAT 2017 419
OTHER 3.48 86 318 NOT_STAT 2017 420
211 3.63 103 324 STAT 2017 421
USA 3.63 104 326 STAT 2017 422
C9 3.30 103 323 NOT_STAT 2017 423
C9 3.20 101 323 STAT 2017 424
C9 3.77 95 324 NOT_STAT 2017 425
OTHER 3.27 101 318 STAT 2017 426
211 3.90 106 322 STAT 2017 427
USA 3.67 104 330 NOT_STAT 2017 428
C9 3.70 110 319 STAT 2017 429
C9 3.68 104 325 STAT 2017 430
USA 3.54 104 323 NOT_STAT 2017 431
C9 3.50 100 330 NOT_STAT 2017 432
985 3.49 100 318 STAT 2017 433
OTHER 3.80 105 324 STAT 2017 434
C9 3.92 109 323 NOT_STAT 2017 435
985 3.80 108 326 STAT 2017 436
985 3.60 107 329 STAT 2017 437
USA 3.54 104 323 NOT_STAT 2017 438
USA 3.75 104 321 NOT_STAT 2017 439
OTHER 3.38 89 311 NOT_STAT 2017 440
USA 3.73 104 316 STAT 2017 441
OTHER 3.63 97 323 STAT 2017 442
C9 3.52 110 319 NOT_STAT 2017 443
C9 3.77 103 320 NOT_STAT 2017 444
USA 3.93 104 326 STAT 2017 445
C9 3.71 105 323 STAT 2017 446
985 3.90 96 322 STAT 2017 447
USA 3.30 104 327 STAT 2017 448
USA 3.70 104 325 STAT 2017 449
985 3.90 106 325 STAT 2017 450
211 3.80 105 332 NOT_STAT 2017 451
211 3.38 103 322 STAT 2017 452
C9 3.54 103 327 NOT_STAT 2017 453
211 3.44 103 319 NOT_STAT 2017 454
985 3.67 102 329 STAT 2017 455
985 3.64 107 328 STAT 2017 456
985 3.60 107 325 STAT 2017 457
211 3.60 103 320 STAT 2017 458
211 3.58 100 322 STAT 2017 459
C9 3.55 108 328 NOT_STAT 2017 460
985 3.40 104 320 STAT 2017 461
USA 3.80 104 318 STAT 2017 462
985 3.60 107 325 STAT 2017 463
USA 3.40 102 326 STAT 2017 464
C9 3.85 106 322 STAT 2017 465
C9 3.91 105 323 STAT 2017 466
985 3.90 104 327 STAT 2017 467
211 3.35 96 320 STAT 2017 468
C9 3.98 106 325 NOT_STAT 2017 469
211 3.70 106 326 NOT_STAT 2017 470
USA 3.70 104 322 STAT 2017 471
985 3.70 106 326 NOT_STAT 2017 472
USA 3.98 104 311 STAT 2017 473
985 3.63 109 324 STAT 2017 474
C9 3.40 106 319 STAT 2017 475
C9 3.92 109 323 NOT_STAT 2017 476
OTHER 3.80 103 320 STAT 2017 477
211 3.80 104 329 NOT_STAT 2017 478
USA 3.84 104 332 STAT 2017 479
985 3.90 100 318 NOT_STAT 2017 480
211 3.70 104 324 STAT 2017 481
985 3.40 112 321 STAT 2017 482
211 3.45 104 315 NOT_STAT 2017 483
211 3.69 106 317 STAT 2017 484
985 3.70 103 326 NOT_STAT 2017 485
985 3.40 99 322 STAT 2017 486
USA 3.00 104 324 STAT 2017 487
C9 3.50 98 319 STAT 2017 488
OTHER 3.00 95 315 STAT 2017 489
C9 3.98 106 325 STAT 2017 490
211 3.21 96 318 STAT 2017 491
211 3.85 109 327 NOT_STAT 2017 492
211 3.60 95 321 STAT 2017 493
OTHER 3.91 106 326 NOT_STAT 2017 494
USA 3.60 104 325 STAT 2017 495
USA 3.40 104 324 STAT 2017 496
USA 3.60 104 325 NOT_STAT 2017 497
C9 3.90 99 331 NOT_STAT 2017 498
C9 3.92 109 323 NOT_STAT 2017 499
USA 3.91 99 318 STAT 2017 500
985 3.58 95 317 NOT_STAT 2017 501
211 3.69 100 324 STAT 2017 502
211 3.75 109 327 NOT_STAT 2017 503
USA 3.63 106 328 NOT_STAT 2017 504
USA 3.95 104 332 NOT_STAT 2017 505
USA 3.54 104 323 NOT_STAT 2017 506
211 3.75 109 327 NOT_STAT 2017 507
USA 3.91 110 328 STAT 2017 508
211 3.90 106 322 STAT 2017 509
C9 3.90 112 337 STAT 2017 510
USA 3.90 104 323 NOT_STAT 2017 511
USA 3.92 110 328 STAT 2017 512
C9 3.30 96 320 STAT 2017 513
C9 3.70 102 325 NOT_STAT 2017 514
211 3.54 105 320 NOT_STAT 2017 515
USA 3.95 104 332 NOT_STAT 2017 516
USA 3.84 104 332 STAT 2017 517
USA 3.90 104 324 NOT_STAT 2017 518
USA 3.43 104 320 STAT 2017 519
C9 3.40 110 322 NOT_STAT 2017 520
USA 3.90 104 325 NOT_STAT 2017 521
USA 3.99 104 322 NOT_STAT 2017 522
USA 3.83 100 320 NOT_STAT 2017 523
OTHER 3.30 95 315 STAT 2017 524
C9 3.10 105 324 NOT_STAT 2017 525
USA 3.93 104 326 STAT 2017 526
211 3.70 101 324 STAT 2017 527
985 3.35 101 323 NOT_STAT 2017 528
USA 3.80 104 329 STAT 2017 529
985 3.90 106 325 STAT 2017 530
211 3.70 110 327 STAT 2017 531
OTHER 3.87 111 329 NOT_STAT 2017 532
985 3.80 100 333 STAT 2017 533
USA 3.95 104 330 STAT 2017 534
USA 3.90 104 318 STAT 2017 535
211 3.50 104 323 NOT_STAT 2017 536
211 3.40 100 323 STAT 2017 537
211 3.80 105 325 STAT 2017 538
USA 3.50 105 330 NOT_STAT 2017 539
985 3.60 101 323 STAT 2017 540
USA 3.80 104 321 STAT 2017 541
211 3.72 95 320 STAT 2017 542
211 3.69 106 317 NOT_STAT 2017 543
211 3.40 108 324 NOT_STAT 2017 544

Column

The count information for each College Type

Chart The count information for student’s major

The count information for each academic year

GPA Information

Column

Distribution plot for GPA

The Boxplot for GPA score with different University Type

Column

The Boxplot for GPA score with different Major Type

The Boxplot for GPA score in different academic year

TOEFL Information

Row

The distribution for TOEFL score

The Boxplot for TOEFL score with different University Type

Row

The Boxplot for TOEFL score with different Major Type

The Boxplot for TOEFL score in different Enroll year

GRE

Row

The distribution for GRE score

The Boxplot for GRE score with different University Type

Row

The Boxplot for GRE score with different Major Type

The Boxplot for GRE Total score in different academic year

GIS

Row

Map

Bar plot

---
title: "Analysis of Statistics Major students"
author: "Shawn Chen"
output: 
  flexdashboard::flex_dashboard:
    vertical_layout: fill
    source_code: embed
---

```{r setup, include=FALSE}
#load packages
library(flexdashboard)
library(readr)
library(tidyverse)
library(ggthemes)
library(plotly)
library(knitr)
library(kableExtra)
library(leaflet)
set.seed(1992-01-16)
```

```{r, message=FALSE, warning=FALSE, include=FALSE}
#load data and data clean
gre <- read_csv("~/Downloads/Analysis of Statistics Major/gre.csv")
count = read_csv("~/Downloads/Analysis of Statistics Major/count.csv")
glimpse(gre)
names(gre)[7] = paste("Enroll_year")
names(gre)[9] = paste("Rank")


#create ID
gre$ID = seq(1, 544, 1)

# fill information
gre$College_ranking[gre$College_ranking == "A"] = "USA"


#handle mising values of Toefl variable
sum(gre$TOEFL == "WAIVED")
gre$TOEFL[which(is.na(gre$TOEFL))] = median(gre$TOEFL,na.rm = T)

# missing ratio
129 / 544
gre$TOEFL[gre$TOEFL == "WAIVED"] = NA
class(gre$TOEFL)
median(gre$TOEFL,na.rm = T) #mdian is 104
gre$TOEFL[which(is.na(gre$TOEFL))] = 104
gre$TOEFL = as.numeric(as.character(gre$TOEFL))


#missing value of GRE writng score
gre %>%
  select(College_ranking,GRE_wirting) %>%
  group_by(College_ranking) %>%
  summarize(median(GRE_wirting,na.rm = T))

class(gre$GRE_wirting)

#211
college_211 = gre %>%
  filter(College_ranking == "211") %>%
  select(GRE_wirting, ID)

college_211$GRE_wirting[which(is.na(college_211$GRE_wirting))] = 3.50

#985
college_985 = gre %>%
  filter(College_ranking == "985") %>%
  select(GRE_wirting, ID)

college_985$GRE_wirting[which(is.na(college_985$GRE_wirting))] = 3.00

#USA
college_USA = gre %>%
  filter(College_ranking == "USA") %>%
  select(GRE_wirting, ID)

college_USA$GRE_wirting[which(is.na(college_USA$GRE_wirting))] = 3.50

#C9
college_C9 = gre %>%
  filter(College_ranking == "C9") %>%
  select(GRE_wirting, ID)

college_C9$GRE_wirting[which(is.na(college_C9$GRE_wirting))] = 3.50

#OTHER
college_OTHER = gre %>%
  filter(College_ranking == "OTHER") %>%
  select(GRE_wirting, ID)

college_OTHER$GRE_wirting[which(is.na(college_OTHER$GRE_wirting))] = 3.00

gre_wirthing_nomissing = college_211 %>%
  rbind(college_985) %>%
  rbind(college_USA) %>%
  rbind(college_C9) %>%
  rbind(college_OTHER)

gre_wirthing_nomissing = gre_wirthing_nomissing %>% arrange(ID)

#replacing missing value
gre$GRE_wirting = gre_wirthing_nomissing$GRE_wirting

# missing value on Statistics_or_Not
gre$Statistics_or_Not[which(is.na(gre$Statistics_or_Not))] = 0
sum(is.na(gre$Statistics_or_Not))

gre$Statistics_or_Not[gre$Statistics_or_Not == "1"] = "STAT"
gre$Statistics_or_Not[gre$Statistics_or_Not == "0"] = "NOT_STAT"

# Enroll year
table(gre$Enroll_year)
gre$Enroll_year[gre$Enroll_year == "1"] = "2015"
gre$Enroll_year[gre$Enroll_year == "2"] = "2016"
gre$Enroll_year[gre$Enroll_year == "3"] = "2017"
```


```{r, message=FALSE, warning=FALSE, include=FALSE}
#select subset to show
show = gre
colnames(show)
show2 = show[c("College_ranking" ,"GPA", "TOEFL", "GRE_total", "Statistics_or_Not", "Enroll_year", "ID")]
colnames(show2) = c("UNIVERSITY", "GPA", "TOEFL", "GRE", "MAJOR", "ACADEMIC YEAR", "ID")
```

Data Summary
=======================================================================
Column 
-----------------------------------------------------------------------

### Data information

```{r}
kable(show2, "html") %>%
  kable_styling() %>%
  scroll_box()
```

Column 
-----------------------------------------------------------------------

### The count information for each College Type

```{r}
p1 = ggplot(data = gre)  + 
  geom_bar(aes(x = College_ranking, fill = College_ranking,y = ..count.., alpha =0.6)) +
  coord_flip() +
  theme_hc() + 
  theme(plot.title = element_text(hjust = 0.5)) +
  labs(
    title = paste("The number of students in each university"),
    x = paste(" "),
    y = paste("Count")) + 
  scale_fill_discrete(name = " ")

ggplotly(p1)
```

### Chart The count information for student's major

```{r}
p10 = ggplot(data = gre) + 
  geom_bar(aes(x = factor(Statistics_or_Not), fill = Statistics_or_Not, y = ..count.., alpha =0.6)) +
  coord_flip() + 
  theme_hc() + 
  theme(plot.title = element_text(hjust = 0.5)) +
  labs(
    title = paste("The number of students STAT major and non-STAT major"),
    x = paste(" "),
    y = paste(" ")) + 
  scale_fill_discrete(name = paste(" "))

ggplotly(p10) 
```

### The count information for each academic year
```{r}
p15 = ggplot(data = gre) + 
  geom_bar(aes(x = factor(Enroll_year), fill = Enroll_year, y = ..count.., alpha =0.6)) +
  coord_flip() + 
  theme_hc() + 
  theme(plot.title = element_text(hjust = 0.5)) +
  labs(
    title = paste("The number of students in each academic year"),
    x = paste(" "),
    y = paste(" ")) + 
  scale_fill_discrete(name = paste(" "))

ggplotly(p15) 

```

GPA Information
===========================================================================

Column
---------------------------------------------------------------------------
###Distribution plot for GPA
```{r}
p2 = ggplot(data = gre) + 
  geom_density(aes(x = GPA),fill = "#b4dfdc", alpha = 0.6) +
  theme_hc() + 
  theme(plot.title = element_text(hjust = 0.5)) +
  labs(
    title = paste("GPA score's distribution"),
    x = paste("GPA"),
    y = paste(" "))

ggplotly(p2)
```

###The Boxplot for GPA score with different University Type
```{r}
plot_ly(data = gre, x = ~ GPA, y = ~ factor(College_ranking), color = ~College_ranking, type = "box") %>%
  layout(
    title = "GPA score in each university",
    xaxis = list(title = "GPA"),
    yaxis = list(title = "")
  )
```

Column
--------------------------------------------------------------------------
###The Boxplot for GPA score with different Major Type
```{r}
plot_ly(data = gre, x = ~ GPA, color = ~factor(Statistics_or_Not), type = "box") %>%
  layout(
    title = "GPA score in STAT and non-STAT major",
    xaxis = list(title = "GPA"),
    yaxis = list(title = "")
  )
```

###The Boxplot for GPA score in different academic year
```{r}
plot_ly(data = gre, x = ~GPA, color = ~Enroll_year, type = "box") %>%
  layout(
    title = "GPA Total score in each academic year",
    xaxis = list(title = "GPA"),
    yaxis = list(title = "")
  )
```



TOEFL Information
===========================================================================

Row
---------------------------------------------------------------------------
###The distribution for TOEFL score
```{r}
pp = ggplot(data = gre) + 
  geom_density(aes(x = TOEFL),fill = "#b4dfdc", alpha =0.6) +
  theme_hc() + 
  theme(plot.title = element_text(hjust = 0.5)) +
  labs(
    title = paste("TOEFL score's distribution"),
    x = paste("TOEFL SCORE"),
    y = paste(" "))
ggplotly(pp)
```

###The Boxplot for TOEFL score with different University Type
```{r}
plot_ly(data = gre, x = ~ TOEFL, y = ~ factor(College_ranking), color = ~College_ranking, type = "box") %>%
  layout(
    title = "TOEFL score in each university",
    xaxis = list(title = "TOEFL"),
    yaxis = list(title = "")
  )
```

Row
---
###The Boxplot for TOEFL score with different Major Type
```{r}
plot_ly(data = gre, x = ~ TOEFL, color = ~factor(Statistics_or_Not), type = "box") %>%
  layout(
    title = "TOEFL score in STAT and non-STAT major",
    xaxis = list(title = "TOEFL"),
    yaxis = list(title = "")
  )
```

###The Boxplot for TOEFL score in different Enroll year
```{r, echo=FALSE, message=FALSE, warning=FALSE}
plot_ly(data = gre, x = ~TOEFL, color = ~Enroll_year, type = "box") %>%
  layout(
    title = "TOEFL Total score in each academic year",
    xaxis = list(title = "TOEFL"),
    yaxis = list(title = "")
  )
```


GRE
==================================================================================
Row
----------------------------------------------------------------------------------
###The distribution for GRE score
```{r}
p6 = ggplot(data = gre) + 
  geom_density(aes(x = GRE_total),fill = "#b4dfdc", alpha =0.6) +
  theme_hc() + 
  theme(plot.title = element_text(hjust = 0.5)) +
  labs(
    title = paste("GRE score's distribution"),
    x = paste("GRE SCORE"),
    y = paste(" "))
ggplotly(p6)
```

###The Boxplot for GRE score with different University Type
```{r}
plot_ly(data = gre, x = ~GRE_total, y = ~ factor(College_ranking), color = ~College_ranking, type = "box") %>%
  layout(
    title = "GRE score in each university",
    xaxis = list(title = "GRE"),
    yaxis = list(title = "")
  )
```

Row
--------------------------------------------------------------------
###The Boxplot for GRE score with different Major Type
```{r}
###
plot_ly(data = gre, x = ~GRE_total, color = ~Statistics_or_Not, type = "box") %>%
  layout(
    title = "GRE score in STAT and non-STAT major",
    xaxis = list(title = "GRE"),
    yaxis = list(title = "")
  )
```

###The Boxplot for GRE Total score in different academic year
```{r}
plot_ly(data = gre, x = ~GRE_total, color = ~Enroll_year, type = "box") %>%
  layout(
    title = "GRE Total score in each academic year",
    xaxis = list(title = "GRE"),
    yaxis = list(title = "")
  )
```

GIS
=============================================================
Row{.tabset}
-------------------------------------------------------------

### Map
```{r}
latitude = c( 40.8075, 40.116421, 42.2780,38.8997, 41.3163, 47.6553, 42.4534, 40.4982, 37.8719, 41.8077,
              42.3505, 33.7925, 33.6405, 36.0014, 38.0336, 38.6488, 39.3299,
              41.7886, 29.7174, 42.3770, 41.8268, 44.9740, 30.4419, 34.0689,
              35.9049, 32.8801, 38.9076, 40.6069, 40.0142, 39.9522, 35.7847,
              43.0392, 40.4444, 32.9858, 38.5382, 42.055984, 40.7295, 29.9403,
              42.7018, 33.7756, 40.4428, 34.4140, 32.8412, 43.0783, 40.4237,
              40.4444, 41.5043, 44.5638, 39.6780, 42.2746, 29.6436, 37.4275,
              29.7034, 36.1352, 38.9404, 40.9124, 33.424564, 43.1306, 36.9914,
              30.6185, 41.6627, 39.5105, 40.7448, 34.0224, 49.2606, 39.1761,
              40.5734)

longitude =c(-73.9626, -88.243385, -83.7382, -77.0486, -72.9223, -122.3035, -76.4735, -74.4468, -122.2585, - 72.2540,
             -71.1054, -84.3240, -117.8443, -78.9382, -78.5080, -90.3108, -76.6205,
             -87.5987, -95.4018, -71.1167, -71.4025, -93.2277, -84.2985, -118.4452,
             -79.0469, -117.2340, -77.0723, -75.3783, -83.0309, -75.1932, -78.6821,
             -76.1351, -79.9608, -96.7501, -121.7617, -87.675171, -73.9965, -90.1207,
             -84.4822, -84.3963, -79.9430, -119.8489, -96.7845, -87.8820, -86.9212,
             -79.9608, -81.6084, -123.2794, -75.7506, -71.8063, -82.3549, -122.1697,
             -95.4030, -80.2763, -92.3277, -73.1234, -111.928001, -77.6260, -122.0609,
             -96.3365, -91.5549, -84.7309, -74.0257, -118.2851, -123.2460, -86.5131,
             -105.0865)

COLUMBIA = makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/Columbia University.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)

UIUC <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/UIUC.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)

UMICH <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/UMICH.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)

GWU <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/GWU.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)

YALE <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/Yale.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)

UW <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/UW.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)

CORNELL <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/CORNELL.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)

RUTGERS <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/RUTGERS.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)

UCB <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/UCB.png", 
  iconWidth = 100, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)

UCONN <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/UCONN.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)

BU <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/BU.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)

EMORY <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/EMORY.png", 
  iconWidth = 60, iconHeight = 80,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)

UCI <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/UCI.png", 
  iconWidth = 60, iconHeight = 80,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)

DUKE <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/DUKE.png", 
  iconWidth = 60, iconHeight = 80,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)

UVA <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/UVA.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)

WUSTL <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/WUSTL.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)

JHU <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/JHU.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)

UCHICAGO <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/UCHICAGO.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)

RICE <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/RICE.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)

HARVARD <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/HARVARD.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)

BROWN <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/Brown.png", 
  iconWidth = 150, iconHeight = 60,
  iconAnchorX = 20, iconAnchorY = 16
)

UMN <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/UMN.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


FSU <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/FSU.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


UCLA <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/UCLA.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


UNC <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/UNC.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


UCSD <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/UCSD.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


GERGETOWN <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/GERGETOWN.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


LEHIGH <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/LEHIGH.png", 
  iconWidth = 60, iconHeight = 80,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


OSU <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/OSU.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


UPEN <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/upenn.png", 
  iconWidth = 100, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


NCSU <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/NCSU.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


SYRACUSE <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/SYRACUSE.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


UPIT <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/UPIT.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


UTD<- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/UTD.png", 
  iconWidth = 100, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


UCD <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/UCD.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


NORTHWESTERN <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/NORTHWESTERN.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


NYU <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/NYU.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


TULANE <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/TULANE.png", 
  iconWidth = 100, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


MSU <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/MSU.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


GATECH <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/GATECH.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


CMU <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/CMU.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


UCSB <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/UCSB.png", 
  iconWidth = 100, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


SMU <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/SMU.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


UWM <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/UWM.png", 
  iconWidth = 60, iconHeight = 80,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


PURDUE <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/PURDUE.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


PITT <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/PITT.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


CWRU <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/CWRU.png", 
  iconWidth = 60, iconHeight = 80,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


OREGONSTATE <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/OREGONSTATE.png", 
  iconWidth = 80, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


UDELAWARE <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/UDELAWARE.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


WPI <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/WPI.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


UFL <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/UFL.png", 
  iconWidth = 100, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


STANFORD <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/STANFORD.png", 
  iconWidth = 60, iconHeight = 80,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


UTH <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/UTH.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


WFU <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/WFU.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)



MIZZOU <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/Mizzou.png", 
  iconWidth = 60, iconHeight = 80,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)

SBU <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/SBU.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


ASU <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/ASU.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


ROCHESTER <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/ROCHESTER.png", 
  iconWidth = 100, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


UCSC <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/UCSC.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


TAMU <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/TAMU.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


UIOWA <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/UIOWA.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


MIAMI<- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/MIAMI.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


SIT <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/SIT.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)


USC <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/USC.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)

UBC <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/UBC.png", 
  iconWidth = 60, iconHeight = 80,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)

IUB <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/IUB.png", 
  iconWidth = 60, iconHeight = 60,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)

CSU <- makeIcon(
  iconUrl = "/Users/xiaochen/Downloads/Analysis of Statistics Major/logo/CSU.png", 
  iconWidth = 60, iconHeight = 80,
  iconAnchorX = 31*215/230/2, iconAnchorY = 16
)





iconlist = c(
             COLUMBIA,
             UIUC,
             UMICH,
             GWU,
             YALE,
             UW,
             CORNELL,
             RUTGERS,
             UCB,
             UCONN,
             BU,
             EMORY,
             UCI,
             DUKE,
             UVA,
             WUSTL,
             JHU,
             UCHICAGO,
             RICE,
             HARVARD,
             BROWN,
             UMN,
             FSU,
             UCLA,
             UNC,
             UCSD,
             GERGETOWN,
             LEHIGH,
             OSU,
             UPEN,
             NCSU,
             SYRACUSE,
             UPIT,
             UTD,
             UCD,
             NORTHWESTERN,
             NYU,
             TULANE,
             MSU,
             GATECH,
             CMU,
             UCSB,
             SMU,
             UWM,
             PURDUE,
             PITT,
             CWRU,
             OREGONSTATE,
             UDELAWARE,
             WPI,
             UFL,
             STANFORD,
             UTH,
             WFU,
             MIZZOU,
             SBU,
             ASU,
             ROCHESTER,
             UCSC,
             TAMU,
             UIOWA,
             MIAMI,
             SIT,
             USC,
             UBC,
             IUB,
             CSU)



leaflet() %>%
  addTiles() %>%
  addMarkers(lat = latitude[1] , lng = longitude[1],icon = iconlist[1:5],
             popup = paste("Columbia University")) %>%
  addMarkers(lat = latitude[2] , lng = longitude[2],icon = iconlist[6:10],
             popup = paste("University of Illinois at Urbana–Champaign")) %>%
  addMarkers(lat = latitude[3] , lng = longitude[3],icon = iconlist[11:15],
             popup = paste("University of Michigan")) %>%
  addMarkers(lat = latitude[4] , lng = longitude[4],icon = iconlist[16:20],
             popup = paste("George Washington University")) %>%
  addMarkers(lat = latitude[5] , lng = longitude[5],icon = iconlist[21:25],
             popup = paste("Yale University")) %>%
  addMarkers(lat = latitude[6] , lng = longitude[6],icon = iconlist[26:30],
             popup = paste("University of Washington")) %>%
  addMarkers(lat = latitude[7] , lng = longitude[7],icon = iconlist[31:35],
             popup = paste("Cornell University")) %>%
  addMarkers(lat = latitude[8] , lng = longitude[8],icon = iconlist[36:40],
             popup = paste("Rutgers University")) %>%
  addMarkers(lat = latitude[9] , lng = longitude[9],icon = iconlist[41:45],
             popup = paste("University of California, Berkeley")) %>%
  addMarkers(lat = latitude[10] , lng = longitude[10],icon = iconlist[46:50],
             popup = paste("University of Connecticut")) %>%
  addMarkers(lat = latitude[11] , lng = longitude[11],icon = iconlist[51:55],
             popup = paste("Boston University")) %>%
  addMarkers(lat = latitude[12] , lng = longitude[12],icon = iconlist[56:60],
             popup = paste("Emory University")) %>%
  addMarkers(lat = latitude[13] , lng = longitude[13],icon = iconlist[61:65],
             popup = paste("University of California, Irvine")) %>%
  addMarkers(lat = latitude[14] , lng = longitude[14],icon = iconlist[66:70],
             popup = paste("Duke University")) %>%
  addMarkers(lat = latitude[15] , lng = longitude[15],icon = iconlist[71:75],
             popup = paste("University of Virginia")) %>%
  addMarkers(lat = latitude[16] , lng = longitude[16],icon = iconlist[76:80],
             popup = paste("Washington University in St. Louis")) %>%
  addMarkers(lat = latitude[17] , lng = longitude[17],icon = iconlist[81:85],
             popup = paste("Johns Hopkins University")) %>%
  addMarkers(lat = latitude[18] , lng = longitude[18],icon = iconlist[86:90],
             popup = paste("University of Chicago")) %>%
  addMarkers(lat = latitude[19] , lng = longitude[19],icon = iconlist[91:95],
             popup = paste("Rice University")) %>%
  addMarkers(lat = latitude[20] , lng = longitude[20],icon = iconlist[96:100],
             popup = paste("Harvard University")) %>%
  addMarkers(lat = latitude[21] , lng = longitude[21],icon = iconlist[101:105],
             popup = paste("Brown University")) %>%
  addMarkers(lat = latitude[22] , lng = longitude[22],icon = iconlist[106:110],
             popup = paste("University of Wisconsin–Milwaukee")) %>%
  addMarkers(lat = latitude[23] , lng = longitude[23],icon = iconlist[111:115],
             popup = paste("Florida State University")) %>%
  addMarkers(lat = latitude[24] , lng = longitude[24],icon = iconlist[116:120],
             popup = paste("University of California, Los Angeles")) %>%
  addMarkers(lat = latitude[25] , lng = longitude[25],icon = iconlist[121:125],
             popup = paste("University of North Carolina at Chapel Hill")) %>%
  addMarkers(lat = latitude[26] , lng = longitude[26],icon = iconlist[126:130],
             popup = paste("University of California, San Diego")) %>%
  addMarkers(lat = latitude[27] , lng = longitude[27],icon = iconlist[131:135],
             popup = paste("Georgetown University")) %>%
  addMarkers(lat = latitude[28] , lng = longitude[28],icon = iconlist[136:140],
             popup = paste("Lehigh University University")) %>%
  addMarkers(lat = latitude[29] , lng = longitude[29],icon = iconlist[141:145],
             popup = paste("Ohio State University")) %>%
  addMarkers(lat = latitude[30] , lng = longitude[30],icon = iconlist[146:150],
             popup = paste("University of Pennsylvania")) %>%
  addMarkers(lat = latitude[31] , lng = longitude[31],icon = iconlist[151:155],
             popup = paste("North Carolina State University")) %>%
  addMarkers(lat = latitude[32] , lng = longitude[32],icon = iconlist[156:160],
             popup = paste("Syracuse University")) %>%
  addMarkers(lat = latitude[33] , lng = longitude[33],icon = iconlist[161:165],
             popup = paste("University of Pitești")) %>%
  addMarkers(lat = latitude[34] , lng = longitude[34],icon = iconlist[166:170],
             popup = paste("University of Texas at Dallas")) %>%
  addMarkers(lat = latitude[35] , lng = longitude[35],icon = iconlist[171:175],
             popup = paste("University College Dublin")) %>%
  addMarkers(lat = latitude[36] , lng = longitude[36],icon = iconlist[176:180],
             popup = paste("Northwestern University")) %>%
  addMarkers(lat = latitude[37] , lng = longitude[37],icon = iconlist[181:185],
             popup = paste("New York University")) %>%
  addMarkers(lat = latitude[38] , lng = longitude[38],icon = iconlist[186:190],
             popup = paste("Tulane University")) %>%
  addMarkers(lat = latitude[39] , lng = longitude[39],icon = iconlist[191:195],
             popup = paste("Michigan State University")) %>%
  addMarkers(lat = latitude[40] , lng = longitude[40],icon = iconlist[196:200],
             popup = paste("Georgia Institute of Technology")) %>%
  addMarkers(lat = latitude[41] , lng = longitude[41],icon = iconlist[201:205],
             popup = paste("Carnegie Mellon University")) %>%
  addMarkers(lat = latitude[42] , lng = longitude[42],icon = iconlist[206:210],
             popup = paste("University of California, Santa Barbara")) %>%
  addMarkers(lat = latitude[43] , lng = longitude[43],icon = iconlist[211:215],
             popup = paste("Southern Methodist University")) %>%
  addMarkers(lat = latitude[44] , lng = longitude[44],icon = iconlist[216:220],
             popup = paste("University of Wisconsin–Milwaukee")) %>%
  addMarkers(lat = latitude[45] , lng = longitude[45],icon = iconlist[221:225],
             popup = paste("Purdue University")) %>%
  addMarkers(lat = latitude[46] , lng = longitude[46],icon = iconlist[226:230],
             popup = paste("University of Pittsburgh")) %>%
  addMarkers(lat = latitude[47] , lng = longitude[47],icon = iconlist[231:235],
             popup = paste("Case Western Reserve University")) %>%
  addMarkers(lat = latitude[48] , lng = longitude[48],icon = iconlist[236:240],
             popup = paste("Oregon State University")) %>%
  addMarkers(lat = latitude[49] , lng = longitude[49],icon = iconlist[241:245],
             popup = paste("University of Delaware")) %>%
  addMarkers(lat = latitude[50] , lng = longitude[50],icon = iconlist[246:250],
             popup = paste("Worcester Polytechnic Institute")) %>%
  addMarkers(lat = latitude[51] , lng = longitude[51],icon = iconlist[251:255],
             popup = paste("University of Florida")) %>%
  addMarkers(lat = latitude[52] , lng = longitude[52],icon = iconlist[256:260],
             popup = paste("Stanford University")) %>%
  addMarkers(lat = latitude[53] , lng = longitude[53],icon = iconlist[261:265],
             popup = paste("University of Texas Health Science Center at Houston")) %>%
  addMarkers(lat = latitude[54] , lng = longitude[54],icon = iconlist[266:270],
             popup = paste("Wake Forest University")) %>%
  addMarkers(lat = latitude[55] , lng = longitude[55],icon = iconlist[271:275],
             popup = paste("University of MIssouri")) %>%
  addMarkers(lat = latitude[56] , lng = longitude[56],icon = iconlist[276:280],
             popup = paste("Stony Brook University")) %>%
  addMarkers(lat = latitude[57] , lng = longitude[57],icon = iconlist[281:285],
             popup = paste("Arizona State University")) %>%
  addMarkers(lat = latitude[58] , lng = longitude[58],icon = iconlist[286:290],
             popup = paste("University of Rochester")) %>%
  addMarkers(lat = latitude[59] , lng = longitude[59],icon = iconlist[291:300],
             popup = paste("University of California, Santa Cruz")) %>%
  addMarkers(lat = latitude[60] , lng = longitude[60],icon = iconlist[296:305],
             popup = paste("Texas A&M University")) %>%
  addMarkers(lat = latitude[61] , lng = longitude[61],icon = iconlist[301:310],
             popup = paste("University of Iowa")) %>%
  addMarkers(lat = latitude[62] , lng = longitude[62],icon = iconlist[306:315],
             popup = paste("Miami University")) %>%
  addMarkers(lat = latitude[63] , lng = longitude[63],icon = iconlist[311:320],
             popup = paste("Stevens Institute of Technology")) %>%
  addMarkers(lat = latitude[64] , lng = longitude[64],icon = iconlist[316:325],
             popup = paste("University of Southern California")) %>%
  addMarkers(lat = latitude[65] , lng = longitude[65],icon = iconlist[321:330],
             popup = paste("University of British Columbia")) %>%
  addMarkers(lat = latitude[66] , lng = longitude[66],icon = iconlist[326:335],
             popup = paste("Indiana University Bloomington")) %>%
  addMarkers(lat = latitude[67] , lng = longitude[67],icon = iconlist[331:340],
             popup = paste("Colorado State University")) 

```

### Bar plot

```{r echo=FALSE, message=FALSE, warning=FALSE}
count$School = factor(count$School, levels = unique(count$School[order(count$Count,decreasing = F)]))
plot_ly(data = count, x = ~Count, y = ~School, type = 'bar')
```