North Carolina births

In 2004, the state of North Carolina released a large data set containing information on births recorded in this state. This data set is useful to researchers studying the relation between habits and practices of expectant mothers and the birth of their children. We will work with a random sample of observations from this data set.

Exploratory analysis

Load the nc data set into our workspace.

load("more/nc.RData")

We have observations on 13 different variables, some categorical and some numerical. The meaning of each variable is as follows.

variable description
fage father’s age in years.
mage mother’s age in years.
mature maturity status of mother.
weeks length of pregnancy in weeks.
premie whether the birth was classified as premature (premie) or full-term.
visits number of hospital visits during pregnancy.
marital whether mother is married or not married at birth.
gained weight gained by mother during pregnancy in pounds.
weight weight of the baby at birth in pounds.
lowbirthweight whether baby was classified as low birthweight (low) or not (not low).
gender gender of the baby, female or male.
habit status of the mother as a nonsmoker or a smoker.
whitemom whether mom is white or not white.
  1. What are the cases in this data set? How many cases are there in our sample? The cases are the number of rows. Each row is a case
head(nc)
##   fage mage      mature weeks    premie visits marital gained weight
## 1   NA   13 younger mom    39 full term     10 married     38   7.63
## 2   NA   14 younger mom    42 full term     15 married     20   7.88
## 3   19   15 younger mom    37 full term     11 married     38   6.63
## 4   21   15 younger mom    41 full term      6 married     34   8.00
## 5   NA   15 younger mom    39 full term      9 married     27   6.38
## 6   NA   15 younger mom    38 full term     19 married     22   5.38
##   lowbirthweight gender     habit  whitemom
## 1        not low   male nonsmoker not white
## 2        not low   male nonsmoker not white
## 3        not low female nonsmoker     white
## 4        not low   male nonsmoker     white
## 5        not low female nonsmoker not white
## 6            low   male nonsmoker not white
nrow(nc)
## [1] 1000

We have 1000 cases

As a first step in the analysis, we should consider summaries of the data. This can be done using the summary command:

summary(nc)
##       fage            mage            mature        weeks      
##  Min.   :14.00   Min.   :13   mature mom :133   Min.   :20.00  
##  1st Qu.:25.00   1st Qu.:22   younger mom:867   1st Qu.:37.00  
##  Median :30.00   Median :27                     Median :39.00  
##  Mean   :30.26   Mean   :27                     Mean   :38.33  
##  3rd Qu.:35.00   3rd Qu.:32                     3rd Qu.:40.00  
##  Max.   :55.00   Max.   :50                     Max.   :45.00  
##  NA's   :171                                    NA's   :2      
##        premie        visits            marital        gained     
##  full term:846   Min.   : 0.0   married    :386   Min.   : 0.00  
##  premie   :152   1st Qu.:10.0   not married:613   1st Qu.:20.00  
##  NA's     :  2   Median :12.0   NA's       :  1   Median :30.00  
##                  Mean   :12.1                     Mean   :30.33  
##                  3rd Qu.:15.0                     3rd Qu.:38.00  
##                  Max.   :30.0                     Max.   :85.00  
##                  NA's   :9                        NA's   :27     
##      weight       lowbirthweight    gender          habit    
##  Min.   : 1.000   low    :111    female:503   nonsmoker:873  
##  1st Qu.: 6.380   not low:889    male  :497   smoker   :126  
##  Median : 7.310                               NA's     :  1  
##  Mean   : 7.101                                              
##  3rd Qu.: 8.060                                              
##  Max.   :11.750                                              
##                                                              
##       whitemom  
##  not white:284  
##  white    :714  
##  NA's     :  2  
##                 
##                 
##                 
## 

As you review the variable summaries, consider which variables are categorical and which are numerical. For numerical variables, are there outliers? If you aren’t sure or want to take a closer look at the data, make a graph.

Ans:

The categorial variables are the Mature, premie , maritial,lowbirthweight, gender, habit, whitemom the rest are numerical

The numerical vectors have outliers for exampe the father age. Lets look at box plot to see it clearly.

boxplot(nc$fage)

boxplot(nc$mage)

boxplot(nc$weight)

Consider the possible relationship between a mother’s smoking habit and the weight of her baby. Plotting the data is a useful first step because it helps us quickly visualize trends, identify strong associations, and develop research questions.

Let’s plot the mother’s smoking habit with the baby wieght

boxplot(weight~habit, data=nc, main=toupper("baby Weight"), font.main=3, cex.main=1.2, xlab="Smoking habit", ylab="Weight", font.lab=3, col="darkgreen")

smoker<-nc[which(nc$habit=='smoker'), ]
nonsmoker<-nc[which(nc$habit=='nonsmoker'), ]
hist(smoker$weight)

hist(nonsmoker$weight)

  1. Make a side-by-side boxplot of habit and weight. What does the plot highlight about the relationship between these two variables?

It highlights that their averages are very similar and the nonsomker baby weights have a lot of skew or outliers

The box plots show how the medians of the two distributions compare, but we can also compare the means of the distributions using the following function to split the weight variable into the habit groups, then take the mean of each using the mean function.

by(nc$weight, nc$habit, mean)
## nc$habit: nonsmoker
## [1] 7.144273
## -------------------------------------------------------- 
## nc$habit: smoker
## [1] 6.82873

There is an observed difference, but is this difference statistically significant? In order to answer this question we will conduct a hypothesis test .

Inference

  1. Check if the conditions necessary for inference are satisfied. Note that you will need to obtain sample sizes to check the conditions. You can compute the group size using the same by command above but replacing mean with length.
by(nc$weight, nc$habit, length)
## nc$habit: nonsmoker
## [1] 873
## -------------------------------------------------------- 
## nc$habit: smoker
## [1] 126

Yes, the conditions work for inference because the sample sizes are less than 10% of population and n>30. It is also a random sampling and normally distribution though with some skew

  1. Write the hypotheses for testing if the average weights of babies born to smoking and non-smoking mothers are different.

Ho: There is no difference in the average weights of babies born to smoking and non smoking mothers Ho: Mu_diff =0

HA: There is a difference in the average weights of babies born to smoking and non smoking mothers HA: Mu_diff <> 0

Next, we introduce a new function, inference, that we will use for conducting hypothesis tests and constructing confidence intervals.

inference(y = nc$weight, x = nc$habit, est = "mean", type = "ht", null = 0, 
          alternative = "twosided", method = "theoretical")
## Warning: package 'BHH2' was built under R version 3.4.2
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## Observed difference between means (nonsmoker-smoker) = 0.3155
## 
## H0: mu_nonsmoker - mu_smoker = 0 
## HA: mu_nonsmoker - mu_smoker != 0 
## Standard error = 0.134 
## Test statistic: Z =  2.359 
## p-value =  0.0184

Let’s pause for a moment to go through the arguments of this custom function. The first argument is y, which is the response variable that we are interested in: nc$weight. The second argument is the explanatory variable, x, which is the variable that splits the data into two groups, smokers and non-smokers: nc$habit. The third argument, est, is the parameter we’re interested in: "mean" (other options are "median", or "proportion".) Next we decide on the type of inference we want: a hypothesis test ("ht") or a confidence interval ("ci"). When performing a hypothesis test, we also need to supply the null value, which in this case is 0, since the null hypothesis sets the two population means equal to each other. The alternative hypothesis can be "less", "greater", or "twosided". Lastly, the method of inference can be "theoretical" or "simulation" based.

  1. Change the type argument to "ci" to construct and record a confidence interval for the difference between the weights of babies born to smoking and non-smoking mothers.
inference(y = nc$weight, x = nc$habit, est = "mean", type = "ci", null = 0, 
          alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862

## Observed difference between means (nonsmoker-smoker) = 0.3155
## 
## Standard error = 0.1338 
## 95 % Confidence interval = ( 0.0534 , 0.5777 )

By default the function reports an interval for (\(\mu_{nonsmoker} - \mu_{smoker}\)) . We can easily change this order by using the order argument:

inference(y = nc$weight, x = nc$habit, est = "mean", type = "ci", null = 0, 
          alternative = "twosided", method = "theoretical", 
          order = c("smoker","nonsmoker"))
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187

## Observed difference between means (smoker-nonsmoker) = -0.3155
## 
## Standard error = 0.1338 
## 95 % Confidence interval = ( -0.5777 , -0.0534 )

On your own

inference(y = nc$weeks, est = "mean", type = "ci", null = 0, 
          alternative = "twosided", method = "theoretical")
## Single mean 
## Summary statistics:

## mean = 38.3347 ;  sd = 2.9316 ;  n = 998 
## Standard error = 0.0928 
## 95 % Confidence interval = ( 38.1528 , 38.5165 )

We are 95 % confident that the average weight of the population will lie with the range ( 38.1528 , 38.5165 )

inference(y = nc$weeks, est = "mean", type = "ci", null = 0, 
          alternative = "twosided", method = "theoretical", conflevel = 0.90)
## Single mean 
## Summary statistics:

## mean = 38.3347 ;  sd = 2.9316 ;  n = 998 
## Standard error = 0.0928 
## 90 % Confidence interval = ( 38.182 , 38.4873 )

Ho: There is no difference in the average weight gained by younger mothers and average weight gained by mature mothers Ho: Mu_diff =0

HA: There is a difference in the average weight gained by younger mothers and average weight gained by mature mothers HA: Mu_diff <> 0

inference(y = nc$gained, x = nc$mature, est = "mean", type = "ht", null = 0, 
          alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_mature mom = 129, mean_mature mom = 28.7907, sd_mature mom = 13.4824
## n_younger mom = 844, mean_younger mom = 30.5604, sd_younger mom = 14.3469
## Observed difference between means (mature mom-younger mom) = -1.7697
## 
## H0: mu_mature mom - mu_younger mom = 0 
## HA: mu_mature mom - mu_younger mom != 0 
## Standard error = 1.286 
## Test statistic: Z =  -1.376 
## p-value =  0.1686

Since p >0.05 we fail to reject the null hypothesis. This means that we do not have enough evidence to claim that there is no significant difference between the weight gained byy younger mom and mature mom

by(nc$mage, nc$mature, max)
## nc$mature: mature mom
## [1] 50
## -------------------------------------------------------- 
## nc$mature: younger mom
## [1] 34
by(nc$mage, nc$mature, min)
## nc$mature: mature mom
## [1] 35
## -------------------------------------------------------- 
## nc$mature: younger mom
## [1] 13

The age cut off is 35 years. any woman that is 35 years or older is considered mature mom, while less than 35 years is younger mom

Ans

We would like to investigate if there is a difference in the average baby weights between male and female new borns.

Ho: There is no difference between the average weight of a male and female new born Ho: Mu_diff =0

HA; There is a difference between the average weight of a male and female new born HA: Mu_diff != 0

inference(y = nc$weight, x = nc$gender, est = "mean", type = "ht", null = 0, 
          alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_female = 503, mean_female = 6.9029, sd_female = 1.4759
## n_male = 497, mean_male = 7.3015, sd_male = 1.5168
## Observed difference between means (female-male) = -0.3986
## 
## H0: mu_female - mu_male = 0 
## HA: mu_female - mu_male != 0 
## Standard error = 0.095 
## Test statistic: Z =  -4.211 
## p-value =  0

Lets build a confidence interval

inference(y = nc$weight, x = nc$gender, est = "mean", type = "ci", null = 0, 
          alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_female = 503, mean_female = 6.9029, sd_female = 1.4759
## n_male = 497, mean_male = 7.3015, sd_male = 1.5168

## Observed difference between means (female-male) = -0.3986
## 
## Standard error = 0.0947 
## 95 % Confidence interval = ( -0.5841 , -0.2131 )
Based on the p value and confidence interval we can gladly reject the null hypothesis. We conclude that there is not enough evidence to show that the average weight of male new born and average weight of female new born is the same

This is a product of OpenIntro that is released under a Creative Commons Attribution-ShareAlike 3.0 Unported. This lab was adapted for OpenIntro by Mine Çetinkaya-Rundel from a lab written by the faculty and TAs of UCLA Statistics.