Here i am going to pull recent FINANCE sentiments on stock counters based on recent news as at 2017-11-01

Let me explain how i get the symbols. Type GOOGLE FINANCE in browser, from there, search stock counter name and then look for the symbols to download.

company <- c("OCBC", "SPH", "SMRT", "SBST", "ComfortDelgro")
symbol <- c("O39", "T39", "S53", "S61", "C52")

download_articles <- function(symbol) {
  WebCorpus(GoogleFinanceSource(paste0("SGX:", symbol)))
}

stock_articles <- data_frame(company = company,symbol = symbol) %>% mutate(corpus = map(symbol, download_articles))

stock_tokens <- stock_articles %>%
  unnest(map(corpus, tidy)) %>%
  unnest_tokens(word, text) %>%
  select(company, datetimestamp, word, id, heading)

stock_tf_idf <- stock_tokens %>%
  count(company, word) %>%
  filter(!str_detect(word, "\\d+")) %>%
  bind_tf_idf(word, company, n) %>%
  arrange(-tf_idf)

stock_sentiment_count <- stock_tokens %>%
  inner_join(get_sentiments("loughran"), by = "word") %>%
  count(sentiment, company) %>%
  spread(sentiment, n, fill = 0)

stock_sentiment_count %>%
  mutate(score = (positive - negative) / (positive + negative)) %>%
  mutate(company = reorder(company, score)) %>%
  ggplot(aes(company, score, fill = score > 0)) +
  geom_col(show.legend = FALSE) +
  coord_flip() +
  labs(x = "Company", y = "Positivity score among 20 recent news articles")