Datos Digestion Anaerobia y su Importancia

Andres Ortiz
30 Oct 2017

Base de datos inicial

X1 Summary data per period X__1 X__2 X__3 X__4 X__5 X__6 X__7 X__8 X__9 X__10 X__11 X__12 X__13 X__14 X__15 X__16 X__17 X__18 X__19 X__20 X__21 X__22 X__23 X__24 X__25
1 Period 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
2 Month June July July August September October November December January February March April May June July August September October November December January February March April May
3 Date 41067 41102 41121 41137 41169 41197 41229 41256 41291 41320 41347 41379 41409 41446 41472 41502 41533 41564 41593 41627 41653 41690 41712 41744 41774
4 Biomass NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
5 Influent_biomass_gal NA 2439588.7759543112 1462095.711046445 1071907.9828260974 1903617.2125744785 1367202.5354003906 2133814.4467773438 1866644.8390696908 1789314.8309316002 1515053.4396840904 1796384.14181722 2160602.2013089466 2346075.4632812501 3118507.1 2668167.5 3152645 3517967 3237216 3135991 3334404 2444506 3237703 1613576 2895836 2847064
6 Food_waste_tank_RT1_gal NA 394805.63106770138 185416.30735841929 144838.64707528247 330932.87658541702 285808.57885742188 594263.27294921875 620144.50523481611 374006.6364301893 454542.36499538756 394183.21118028427 661510.13911692111 613636.73984375014 870612.2 607983.5 816993 858435 995524 894159 918288 591950 1015859 489276 898696 818932
7 Manure_tank_RT2_gal NA 2044783.1448866099 1276679.4036880257 927069.33575081488 1572684.3359890613 1081393.9565429688 1539551.173828125 1246500.3338348747 1415308.1945014107 1060511.0746887028 1402200.9306369359 1499092.0621920258 1732438.7234375004 2247894.9 2060184 2335652 2659532 2241692 2241832 2416116 1852556 2221844 1124300 1997140 2028132
8 Co-digestionratio% NA 0.16183286091454593 0.12681543756510572 0.13512227672137841 0.17384423422913831 0.20904626158678216 0.27849810176640355 0.33222415547667189 0.20902226369825824 0.30001738096457237 0.21943146902951893 0.30616933497344484 0.2615588242781885 0.2791759557000848 0.22786556691062312 0.25914525739498107 0.24401451179047445 0.30752473730514118 0.28512805043126715 0.27539794218097147 0.24215526572649035 0.31375916815100086 0.30322463893860591 0.31034077896676471 0.28764088197525589
9 Average_influent_biomass_per_day_gal/d NA 69702.536455837471 76952.405844549736 66994.248926631088 59488.037892952452 48828.661978585376 66681.701461791992 69134.994039618177 51123.280883760002 52243.222058072082 66532.745993230375 67518.818790904581 78202.515442708333 84283.975675675683 102621.82692307692 105088.16666666667 113482.80645161291 104426.32258064517 108137.62068965517 98070.705882352937 94019.461538461532 87505.486486486479 73344.363636363632 90494.875 94902.133333333331
10 HRT_d NA 31.562696450707911 28.589099663033057 32.838639663075192 36.982224963594469 45.055504510134782 32.992559454419137 31.82180067505724 43.033231865579651 42.110725819218089 33.066424166888396 32.583508411381757 28.13208740851481 26.102233341075284 21.43793446251032 20.93480236436389 19.386196630042292 21.067485147731876 20.344446141586502 22.432794586378858 23.399410760292675 25.141280716606808 29.995488281927845 24.3107689800113 23.181776033134486
11 Influent_biomass_lb NA 20492545.718016215 12281603.972790139 9004027.0557392184 15990384.585625621 11484501.297363281 17924041.352929689 15679816.648185404 15030244.579825442 12726448.89334636 15089626.791264649 18149058.490995154 19707033.891562503 26195459.640000001 22412607 26482218 29550922.800000001 27192614.400000002 26342324.400000002 28008993.600000001 20533850.400000002 27196705.200000003 13554038.4 24325022.400000002 23915337.600000001
12 Food_waste_tank_RT1_lb NA 3316367.3009686917 1557496.981810722 1216644.6354323728 2779836.1633175029 2400792.0624023438 4991811.4927734379 5209213.8439724557 3141655.7460135901 3818155.8659612555 3311138.9739143881 5556685.1685821377 5154548.6146875015 7313142.4799999995 5107061.4000000004 6862741.2000000002 7210854 8362401.6000000006 7510935.6000000006 7713619.2000000002 4972380 8533215.5999999996 4109918.4000000004 7549046.4000000004 6879028.8000000007
13 Manure_tank_RT2_lb NA 17176178.417047523 10724106.990979416 7787382.4203068456 13210548.422308115 9083709.2349609379 12932229.860156251 10470602.804212948 11888588.833811851 8908293.0273851044 11778487.817350261 12592373.322413018 14552485.276875004 18882317.16 17305545.600000001 19619476.800000001 22340068.800000001 18830212.800000001 18831388.800000001 20295374.400000002 15561470.4 18663489.600000001 9444120 16775976 17036308.800000001
14 Effluent_digester_gal NA 2180828.36328125 1335574.65625 932362.6796875 1702547.4931640625 1232853.9912109375 1844738.978515625 1615089.802734375 1569158.39453125 1300327.0999999999 1607578.3999999997 1813074.6000000006 1993242.7 2332325.7999999998 1836774 2217268 2408716 2166136 2109616 2600420 1967380 2309644 1189520 2176148 2027852
15 Average_effluent_biomass_per_day_gal/d NA 62309.381808035716 70293.40296052632 58272.66748046875 53204.609161376953 44030.499686104908 57648.093078613281 59818.140842013891 44833.096986607146 44838.865517241371 59539.940740740727 56658.581250000017 66441.423333333325 63035.832432432428 70645.153846153844 73908.933333333334 77700.516129032258 69875.354838709682 72745.379310344826 76482.941176470587 75668.461538461532 62422.810810810814 54069.090909090912 68004.625 67595.066666666666
16 Influent-effluent_difference_gal/d NA 7393.1546478017553 6659.0028840234154 8721.5814461623377 6283.4287315754991 4798.1622924804688 9033.6083831787109 9316.8531976042868 6290.1838971528559 7404.3565408307113 6992.8052524896484 10860.237540904564 11761.092109375008 21248.143243243256 31976.673076923078 31179.233333333337 35782.290322580651 34550.967741935485 35392.241379310348 21587.76470588235 18351 25082.675675675666 19275.272727272721 22490.25 27307.066666666666
17 Influent-effluentdifference% NA 0.10606722543713955 8.6534044139895488E-2 0.13018403200122144 0.10562507949719917 9.8265283095096537E-2 0.13547357348634673 0.13476320244224244 0.12303951914696115 0.14172855825393457 0.10510321117966712 0.16084756421075808 0.15039275965478702 0.25210181499987616 0.31159719170554323 0.29669594895714552 0.3153102345758218 0.3308645453377223 0.32728888571427661 0.22012449601188097 0.1951829940282413 0.28664117740262157 0.26280509873721475 0.24852512366031779 0.28773922890388132
18 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
19 Temperature NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
20 Digester_temperature_F NA 113 113.9 112.8 112.5 103.2 108.5 105 102.6 99.7 103.8 108 110 110.79805165823052 106.07931464727517 105.39634416620298 104.00688513654485 105.92159623138367 107.48065370655118 103.57721378385126 101.03532067336053 104.90026553864236 103.55107455131765 99.022802622129674 102.50227036106072
21 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
22 Biogas NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
23 Biogas_from_digester_Nm3 NA 301011.57282709487 161262.91230689513 119886.63789480277 258775.1550280368 190038.06547020806 270998.71940524451 226757.48566845278 251126.59853481717 225868.36114656416 243887.68336859808 305163.51466435043 307094.10214843752 405799.3 289559.5 336196 330965.5 368500 337398.5 325435.5 200852 363019.5 163886 234565.5 355959.5
24 Biogas_from_digester_Nm3/h NA 358.34711050844629 353.64673751512095 312.20478618438221 336.94681644275624 282.7947402830477 352.86291589224544 349.93439146366171 298.96023635097282 324.52350739448872 376.36988174166368 397.34832638587295 426.51958631727433 456.98119369369368 464.03766025641022 466.93888888888887 444.84610215053766 495.2956989247312 484.76795977011494 398.81801470588238 321.87820512820514 408.80574324324328 310.3901515151515 305.423828125 494.38819444444448
25 Biogas_from_digester_Nm3/d NA 8600.3306522027106 8487.5217003629023 7492.9148684251732 8086.7235946261499 6787.0737667931453 8468.709981413891 8398.4253951278806 7175.0456724233472 7788.5641774677297 9032.8771617999282 9536.3598332609508 10236.470071614584 10967.548648648648 11136.903846153846 11206.533333333333 10676.306451612903 11887.096774193549 11634.431034482759 9571.6323529411766 7725.0769230769229 9811.3378378378384 7449.363636363636 7330.171875 11865.316666666668
26 Biogas_from_digester_ft3 NA 10630133.390917009 5694951.369244311 4233760.6512635918 9138566.9672686122 6711137.2706607552 9570238.4761803877 8007872.5791357085 8868460.48927751 7976473.4133825675 8612820.3718570322 10776757.971317139 10844936.089141425 14330680.539709998 10225706.87465 11872660.881200003 11687947.342850003 13013466.949999999 11915126.807950003 11492657.051850006 7093028.124400001 12819924.736650003 5787584.9242000012 8283610.2628500015 12570602.954650002
27 Average_biogas_production_per_day_ft3/d NA 303718.09688334313 299734.28259180585 264610.04070397449 285580.21772714413 239683.47395216982 299069.95238063711 296587.87330132251 253384.58540792885 275050.80735801958 318993.34710581601 336773.68660366058 361497.86963804747 387315.69026243238 393296.41825576924 395755.36270666675 377030.55944677431 419789.25645161286 410866.44165344839 338019.32505441195 272808.77401538467 346484.452341892 263072.04200909095 258862.82071406255 419020.0984883334
28 Specific_biogas_production_rate_ft3/lb_added NA 0.51873171528764372 0.46369768817342266 0.47020745551458204 0.57150388837324317 0.58436471004636137 0.53393307277859692 0.51071213132217619 0.59004099648393782 0.62676348133160897 0.57077756070434915 0.593791571979568 0.55030788239445039 0.54706734436632309 0.45624798911835646 0.44832577396651602 0.39551886152435156 0.47856622973332047 0.45231873342012302 0.41032024270411505 0.34543098280291357 0.47137786148632449 0.42700077669840458 0.34053864891199448 0.52562933314602256
29 Biogas_to_CHP-boilerNm3 NA 298065.95762782416 187938.42552018401 147482.04235101541 244157.83677217137 64138.036759999995 316163.25755652279 289235.00705919293 137815 171899.77371406509 253886.13611111112 302362.70846127201 319087 414382 330647 350435 318180 432635 320544 374203 276274 456112 88119 154732 190894
30 Biogas_to_CHP-boiler_ft3 NA 10526109.873839326 6636989.1157176383 5208284.0810134038 8622360.7582582012 2265015.5267683719 11165210.59163134 10214247.503793284 4866895.3805000009 6070588.9387800954 8965912.7309230566 10677848.340497285 11268461.6789 14633776.015400004 11676699.610900002 12375506.894500002 11236431.246000001 15278375.2345 11319915.196799999 13214866.684099998 9756533.4278000016 16107458.446400002 3111896.0492999996 5464314.1604000004 6741364.3417999996
31 Biogastotal_energy_MMBTU-_wet_biogas NA 5810.005706139601 3163.6593846425994 2162.2662398133416 4667.2489215234255 3487.6438168169807 5230.7095415411532 4089.780683616189 4688.2229530516624 4145.2137034666521 4553.0813613785012 5890.1448368030951 5927.4082688811368 7575.7709605122936 5497.3400158118402 6648.6900934720006 6492.8885079000338 6996.0398323199988 6832.61031675085 6229.9395346668507 3813.2119196774402 7006.8580640634254 3059.5488943290889 4490.3794512857285 6589.0072447093435
32 Biogastotal_energy_MMBTU-_dry_biogas NA 5189.4514803862185 2815.2524388468751 1932.8849455334043 4177.1562874216916 3220.7679718712452 4751.3315513140742 3757.0540256060804 4336.731905624697 3863.6550935542245 4197.4883715687938 5359.4382390329692 5355.7358615831845 6825.0120610938966 5033.3654335294632 6100.435272943474 5982.2138781727972 6408.7362772290608 6227.7711075446796 5747.0609900402142 3542.155000138348 6438.7426372017462 2822.6161825561499 4192.3294632700508 6096.6492487693959
33 Biogasto_CHP-boiler_energy_MMBTU-_wet_biogas NA 5281.5808902976205 3330.175658702482 2426.6437190257652 4017.3303244876615 1095.9051124716091 5702.2963533579568 4850.5418546013552 2398.4060435104007 2937.193752139362 4579.0709499370232 5692.5745072859127 5855.9941652907519 7473.7620865850895 6068.1472537925119 6431.3034229337609 5839.3485899212801 7939.8660418649588 6085.58640979968 6630.6915074140161 4982.8567522460162 8298.5625915852797 1672.9553161036797 2790.7345279994879 3322.14434763904
34 Biogasto_CHP-boiler_energy_MMBTU-_dry_biogas NA 4717.4665837197344 2963.430636831908 2169.2162724063974 3595.4835291077657 1012.0460321776424 5179.6989229629717 4455.9229970951264 2218.5898827111587 2737.6884312908346 4221.4481884702918 5179.669148755821 5291.2093335844584 6733.1122665356015 5555.9966356374971 5900.9744326613709 5380.0757754600363 7273.3301636970464 5546.8755656241838 6116.7509391064787 4628.6572400713503 7625.7158768449544 1543.4009754444764 2605.4988699334372 3073.8999198399724
35 Water_vapor_density_g/L NA 7.3645124195327524E-2 7.5815134654580577E-2 7.3171397861537535E-2 7.2466515863195802E-2 5.3680220751334787E-2 6.3691934547034548E-2 5.6890285944059489E-2 5.2650967001535029E-2 4.7947721007413804E-2 5.472959499163655E-2 6.2672615949001836E-2 6.6850443537688084E-2 6.859422895580769E-2 5.8906444030548455E-2 5.762251116035929E-2 5.5096164214366347E-2 5.8607427834868719E-2 6.1631125762519751E-2 5.4337578252732589E-2 5.0058765171976494E-2 5.670750166005379E-2 5.4291767853277807E-2 4.6911383737775113E-2 5.2485198437831157E-2
36 Water_vapor_density_L/L NA 0.10680785134128618 0.11012783091852484 0.10608374216661622 0.10500674858836626 7.6520384237316191E-2 9.1646838047489271E-2 8.1355623626231083E-2 7.4973193669932575E-2 6.7923786336265252E-2 7.8099414788855792E-2 9.0100772132824108E-2 9.6445593312549288E-2 9.9099999634575692E-2 8.4399833546380684E-2 8.2460576868642055E-2 7.865137821262265E-2 8.3948000464168129E-2 8.8522421324591691E-2 7.7509346910934113E-2 7.1083623267919741E-2 8.1079910805588212E-2 7.7440407052195431E-2 6.637523426452005E-2 7.4724154588733688E-2
37 Watervapor_density% NA 0.10680785134128618 0.11012783091852484 0.10608374216661622 0.10500674858836626 7.6520384237316191E-2 9.1646838047489271E-2 8.1355623626231083E-2 7.4973193669932575E-2 6.7923786336265252E-2 7.8099414788855792E-2 9.0100772132824108E-2 9.6445593312549288E-2 9.9099999634575692E-2 8.4399833546380684E-2 8.2460576868642055E-2 7.865137821262265E-2 8.3948000464168129E-2 8.8522421324591691E-2 7.7509346910934113E-2 7.1083623267919741E-2 8.1079910805588212E-2 7.7440407052195431E-2 6.637523426452005E-2 7.4724154588733688E-2
38 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
39 Biomass_loss NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
40 Masswater_loss_in_biomass_kg/d NA 633.37241900235074 643.48260059668814 548.2670549801685 586.01668365125568 364.33161805704935 539.38852183403174 477.78882220867592 377.77309293326834 373.44390222956008 494.36570867451354 597.66861738145076 684.3125645477046 752.31054308936461 656.03540308706135 645.74859206893836 588.22353346096338 696.67216635964917 717.04308226156968 520.09932198432818 386.7078116277624 556.37645672653775 404.4391212001039 343.86850569197151 622.75349977770531
41 Volume_water_loss_in_biomass_L/d NA 629.2538750920836 639.29831459600507 544.70191404137393 582.20607338254763 361.9625288421604 535.88111411431021 474.68197040227619 375.31659968429835 371.01555981487684 491.15106462336684 593.7822396822902 679.86277914360301 747.4185965616789 651.76949170026671 641.54957131647461 584.39857301284758 692.14201186897424 712.38046461159502 516.71734349737949 384.19321980966441 552.75858389387406 401.80923042854778 341.63247914967104 618.70400605622785
42 Volume_water_loss_in_biomass_gal/d NA 166.231805117579 168.88527357637372 143.89547050281976 153.80305209028046 95.620681788492732 141.56525442867601 125.39810070330115 99.148465072198007 98.012247005567929 129.7487886678731 156.86116122002699 179.60130478776429 197.4477192797799 172.17982028326378 169.47999453597365 154.38225102045953 182.84514499629478 188.19159523738443 136.50270605415002 101.49342732859523 146.02382413849898 106.14709949504616 90.250034117839874 163.44481588636017
43 %_biomass_volume_due_to_water_loss NA 2.3848745478997182E-3 2.1946717808607056E-3 2.1478779568139829E-3 2.5854450329500867E-3 1.9582900270834532E-3 2.1230000333718481E-3 1.8138151661869111E-3 1.9393994938946466E-3 1.8760758457167955E-3 1.9501493096508429E-3 2.3232213481962994E-3 2.2966180022603155E-3 2.3426483824108835E-3 1.6778089559088244E-3 1.6127409956018547E-3 1.3604021247596255E-3 1.7509488075201462E-3 1.7402971698210067E-3 1.3918805297261823E-3 1.0794938161507791E-3 1.6687390699901944E-3 1.4472427632110391E-3 9.9729442267133773E-4 1.7222459616611377E-3
44 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
45 COD_basis NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
46 kg_TS_destroyed_per_day_COD_based NA 10821.067624553103 10854.197374795662 8809.4902950181659 9507.6367843915395 8119.6197346781619 10655.460482573037 9874.1075150321522 8731.7603768176286 9317.7386268567116 10992.67133493053 11998.793862810244 12879.68327744296 13347.09367623375 13782.907702185092 14446.958726188122 13653.306766173682 14711.338083630299 15358.551241255975 11944.459743459953 9560.4688424979304 12344.775395744569 9065.5950083363023 9147.336592663416 14317.273684380865
47 Volume_biomass_destroyed_L/d NA 10750.702953104525 10783.617275066634 8752.2060314181599 9445.8127794229222 8066.8213976987627 10586.172681960061 9809.9005111348015 8674.9815568896956 9257.1494465770465 10921.190799583952 11920.770952573535 12795.932328495679 13260.30336182978 13693.283479722071 14353.016470260174 13564.525281931907 14615.676684335944 15258.681297779694 11866.79014424478 9498.3012937552976 12264.502718873286 9006.6454077626895 9087.8554623069376 14224.174713577378
48 Volume_of_biomass_destroyed_gal/d NA 2840.044104481567 2848.7391755340609 2312.0954275421777 2495.3275160941835 2131.0353985572892 2796.5796697733558 2591.5096188341527 2291.6948161065397 2445.4877811002921 2885.0823689924318 3149.1443315299666 3380.3382280593014 3503.01245887615 3617.3940613203549 3791.6776219845124 3583.3796380651729 3861.0653258139018 4030.9297030114899 3134.8840662135522 2509.1935578156331 3239.948940369125 2379.3114090354229 2400.7649026012937 3757.6411247364554
49 %_biomass_destroyed_based_on_CH4-COD NA 4.0745204534715584E-2 3.7019494637877223E-2 3.4511849368955155E-2 4.1946710708201135E-2 4.3643125004979459E-2 4.1939236829098767E-2 3.7484773880924534E-2 4.4826833812118022E-2 4.6809666110982917E-2 4.3363344258870444E-2 4.6640986734119018E-2 4.322544113732197E-2 4.1562022090126889E-2 3.5249753096209001E-2 3.6080918929830466E-2 3.1576410119827834E-2 3.6974062002730415E-2 3.7275923747017513E-2 3.1965550140673052E-2 2.668802306200372E-2 3.7025666280587698E-2 3.2440276131263296E-2 2.6529291328390627E-2 3.9594906802970946E-2
50 Total_volume_of_biomass_reduced_gal/d NA 3006.275909599146 3017.6244491104344 2455.9908980449973 2649.1305681844638 2226.6560803457819 2938.1449242020317 2716.9077195374539 2390.8432811787379 2543.5000281058601 3014.8311576603051 3306.0054927499937 3559.9395328470655 3700.46017815593 3789.5738816036187 3961.157616520486 3737.7618890856324 4043.9104708101968 4219.1212982488742 3271.3867722677023 2610.6869851442284 3385.9727645076241 2485.4585085304689 2491.0149367191334 3921.0859406228155
51 Totalvolume_of_biomass_reduced% NA 4.3130079082615298E-2 3.9214166418737928E-2 3.6659727325769137E-2 4.4532155741151221E-2 4.5601415032062914E-2 4.4062236862470613E-2 3.9298589047111442E-2 4.6766233306012671E-2 4.8685741956699717E-2 4.5313493568521289E-2 4.8964208082315323E-2 4.552205913958228E-2 4.3904670472537773E-2 3.6927562052117828E-2 3.7693659925432318E-2 3.2936812244587457E-2 3.8725010810250565E-2 3.9016220916838519E-2 3.335743067039923E-2 2.77675168781545E-2 3.8694405350577894E-2 3.3887518894474333E-2 2.7526585751061962E-2 4.1317152764632083E-2
52 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
53 Molar_basis NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
54 Mass_of_biomass_destroyed_kg/d NA 9823.2483244719315 9588.3661024043504 8932.7928115076356 9164.448280172408 7873.2841626119571 9839.1651236343951 9847.4376203078882 8374.5680984515566 9035.0541477785646 10542.991413585245 10892.375484383187 11692.037381579144 12801.100818660982 12641.004499449151 12590.037448504587 12061.03954646137 13259.154033589377 13309.544091560163 10898.498980371161 8920.0459897930123 11013.842859055012 8694.7464742458706 8490.2182606076822 14039.539463704101
55 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
56 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
57 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
58 CHP_ NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
59 Working_hours_h 1689 2264 2700 3011 3555 3709 4449 5047 5262 5609 6114 6803 7507 8324 8935 9629 10299 11033 11692 12402 12980 13850 14116 14595 15269
60 CHP_runtime_h NA 575 436 311 544 154 740 598 215 347 505 689 704 817 611 694 670 734 659 710 578 870 266 479 674
61 Electrical_energy_generated_MWh NA 673.43107241047755 457.57916574017668 346.79763152453017 580.40475264971781 203.24712083333347 871.13401249999993 681.16182499999979 251.31660772269495 365.19711309535757 653.8615795857072 813.17669500987881 840.99199108608934 1024.8999999999999 731.5 893 764.09999999999991 1000.4000000000001 850.80000000000007 873.4 569.60000000000014 996.5 194.89999999999998 535.20000000000005 923.70000000000016
62 Electrical_energy_generated_MMBTU NA 2297.7468190645495 1561.2601135054829 1183.273518761697 1980.3410160408373 693.4791762833338 2972.3092506499997 2324.1241468999997 857.49226554983522 1246.0525498813602 2230.9757095464329 2774.558883373707 2869.4646735857368 3496.9587999999994 2495.8780000000002 3046.9160000000002 2607.1091999999994 3413.3648000000003 2902.9296000000004 2980.0408000000002 1943.4752000000005 3400.058 664.99879999999985 1826.1024 3151.6644000000006
63 Average_energy_generated_per_day_MWh/d NA 18.706418678068822 24.083113986325088 21.674851970283136 18.137648520303681 7.2588257440476243 27.222937890624998 24.327208035714278 7.1804745063627129 12.593003899839916 24.217095540211378 27.105889833662626 28.999723830554807 27.699999999999996 28.134615384615383 29.766666666666666 24.64838709677419 32.270967741935486 29.337931034482761 25.688235294117646 21.907692307692312 28.471428571428572 12.181249999999999 19.822222222222223 30.790000000000006
64 Daily_average_instant_Power_MW NA 0.77943411158620091 1.0034630827635453 0.90311883209513077 0.75573535501265332 0.30245107266865096 1.1342890787760416 1.0136336681547615 0.29918643776511306 0.52470849582666312 1.0090456475088079 1.1294120764026097 1.2083218262731168 1.1541666666666666 1.1722756410256407 1.2402777777777776 1.0270161290322577 1.3446236559139784 1.2224137931034482 1.0703431372549017 0.91282051282051269 1.1221846846846848 0.36912878787878789 0.69687499999999991 1.2829166666666671
65 Capacity_factor NA 0.56220452849335267 0.70369080137696027 0.63332316416208323 0.52996869215473597 0.21209752641560381 0.79543413658908957 0.73714982879677227 0.20980816112560524 0.36795827196820702 0.70760564341431098 0.74251319889722756 0.81910549233100483 0.80937353903693299 0.82207267954112273 0.86976001246688484 0.72020766411799297 0.94293384005187841 0.85723267398558789 0.75059126034705603 0.64012658683065438 0.78694578168631468 0.25885609248161839 0.48869214586255266 0.89966105656849005
66 Onlineefficiency% NA 0.68452380952380953 0.95614035087719296 0.80989583333333337 0.70833333333333337 0.22916666666666666 0.96354166666666663 0.9228395061728395 0.25595238095238093 0.49856321839080459 0.77932098765432101 0.89713541666666663 0.97777777777777775 0.92004504504504503 0.97916666666666663 0.96388888888888891 0.90053763440860213 0.98655913978494625 0.94683908045977017 0.87009803921568629 0.92628205128205132 0.97972972972972971 0.50378787878787878 0.62369791666666663 0.93611111111111112
67 Thermalconversion_efficiency% NA 0.39938930401266104 0.4303941052805178 0.41567378516240033 0.4202192546546587 NA 0.48706758714524906 0.41630833020806945 0.32235941287436576 0.37554993170140427 0.4552631403155083 0.47541442314404508 0.46590610972632984 0.43721622234867819 0.39107981437928507 0.45046353462352973 0.42451493973705645 0.40875933962705502 0.46919727991471 0.41259273751414444 0.36445643404460981 0.38620817395145823 0.39098305497558894 0.403336592639716 0.45871824297301061
68 ft3/kWh NA 15.630567559293327 14.504570165430705 15.018222754629754 14.855772146755513 11.144145695553188 12.81686908262159 14.995331694921815 19.365593959752065 16.622773623062535 13.71224890840649 13.131030938322164 13.399011879230237 14.278247648941365 15.962678893916612 13.858350385778278 14.705445944248138 15.272266327968811 13.305024913963326 15.130371747309363 17.128745484199438 16.164032560361267 15.966629293483837 10.209854559790733 7.2982184061924853

Tipo base datos Inicial

Classes 'tbl_df', 'tbl' and 'data.frame':   68 obs. of  27 variables:
 $ X1                     : int  1 2 3 4 5 6 7 8 9 10 ...
 $ Summary data per period: chr  "Period" "Month" "Date" "Biomass" ...
 $ X__1                   : chr  "0" "June" "41067" NA ...
 $ X__2                   : chr  "1" "July" "41102" NA ...
 $ X__3                   : chr  "2" "July" "41121" NA ...
 $ X__4                   : chr  "3" "August" "41137" NA ...
 $ X__5                   : chr  "4" "September" "41169" NA ...
 $ X__6                   : chr  "5" "October" "41197" NA ...
 $ X__7                   : chr  "6" "November" "41229" NA ...
 $ X__8                   : chr  "7" "December" "41256" NA ...
 $ X__9                   : chr  "8" "January" "41291" NA ...
 $ X__10                  : chr  "9" "February" "41320" NA ...
 $ X__11                  : chr  "10" "March" "41347" NA ...
 $ X__12                  : chr  "11" "April" "41379" NA ...
 $ X__13                  : chr  "12" "May" "41409" NA ...
 $ X__14                  : chr  "13" "June" "41446" NA ...
 $ X__15                  : chr  "14" "July" "41472" NA ...
 $ X__16                  : chr  "15" "August" "41502" NA ...
 $ X__17                  : chr  "16" "September" "41533" NA ...
 $ X__18                  : chr  "17" "October" "41564" NA ...
 $ X__19                  : chr  "18" "November" "41593" NA ...
 $ X__20                  : chr  "19" "December" "41627" NA ...
 $ X__21                  : chr  "20" "January" "41653" NA ...
 $ X__22                  : chr  "21" "February" "41690" NA ...
 $ X__23                  : chr  "22" "March" "41712" NA ...
 $ X__24                  : chr  "23" "April" "41744" NA ...
 $ X__25                  : chr  "24" "May" "41774" NA ...
 - attr(*, "spec")=List of 2
  ..$ cols   :List of 27
  .. ..$ X1                     : list()
  .. .. ..- attr(*, "class")= chr  "collector_integer" "collector"
  .. ..$ Summary data per period: list()
  .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
  .. ..$ X__1                   : list()
  .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
  .. ..$ X__2                   : list()
  .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
  .. ..$ X__3                   : list()
  .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
  .. ..$ X__4                   : list()
  .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
  .. ..$ X__5                   : list()
  .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
  .. ..$ X__6                   : list()
  .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
  .. ..$ X__7                   : list()
  .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
  .. ..$ X__8                   : list()
  .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
  .. ..$ X__9                   : list()
  .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
  .. ..$ X__10                  : list()
  .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
  .. ..$ X__11                  : list()
  .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
  .. ..$ X__12                  : list()
  .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
  .. ..$ X__13                  : list()
  .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
  .. ..$ X__14                  : list()
  .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
  .. ..$ X__15                  : list()
  .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
  .. ..$ X__16                  : list()
  .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
  .. ..$ X__17                  : list()
  .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
  .. ..$ X__18                  : list()
  .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
  .. ..$ X__19                  : list()
  .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
  .. ..$ X__20                  : list()
  .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
  .. ..$ X__21                  : list()
  .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
  .. ..$ X__22                  : list()
  .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
  .. ..$ X__23                  : list()
  .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
  .. ..$ X__24                  : list()
  .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
  .. ..$ X__25                  : list()
  .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
  ..$ default: list()
  .. ..- attr(*, "class")= chr  "collector_guess" "collector"
  ..- attr(*, "class")= chr "col_spec"

Base de datos Final

X1 Month Food_waste_tank_RT1_gal Manure_tank_RT2_gal Digester_temperature_F Biogas_from_digester_ft3 Electrical_energy_generated_MWh
0 6 NA NA NA NA NA
1 7 394805.6 2044783.1 113.0000 10630133 673.4311
2 7 185416.3 1276679.4 113.9000 5694951 457.5792
3 8 144838.6 927069.3 112.8000 4233761 346.7976
4 9 330932.9 1572684.3 112.5000 9138567 580.4048
5 10 285808.6 1081394.0 103.2000 6711137 203.2471
6 11 594263.3 1539551.2 108.5000 9570238 871.1340
7 12 620144.5 1246500.3 105.0000 8007873 681.1618
8 1 374006.6 1415308.2 102.6000 8868460 251.3166
9 2 454542.4 1060511.1 99.7000 7976473 365.1971
10 3 394183.2 1402200.9 103.8000 8612820 653.8616
11 4 661510.1 1499092.1 108.0000 10776758 813.1767
12 5 613636.7 1732438.7 110.0000 10844936 840.9920
13 6 870612.2 2247894.9 110.7981 14330681 1024.9000
14 7 607983.5 2060184.0 106.0793 10225707 731.5000
15 8 816993.0 2335652.0 105.3963 11872661 893.0000
16 9 858435.0 2659532.0 104.0069 11687947 764.1000
17 10 995524.0 2241692.0 105.9216 13013467 1000.4000
18 11 894159.0 2241832.0 107.4807 11915127 850.8000
19 12 918288.0 2416116.0 103.5772 11492657 873.4000
20 1 591950.0 1852556.0 101.0353 7093028 569.6000
21 2 1015859.0 2221844.0 104.9003 12819925 996.5000
22 3 489276.0 1124300.0 103.5511 5787585 194.9000
23 4 898696.0 1997140.0 99.0228 8283610 535.2000
24 5 818932.0 2028132.0 102.5023 12570603 923.7000

Tipo de base datos Final

Classes 'tbl_df', 'tbl' and 'data.frame':   25 obs. of  7 variables:
 $ X1                             : int  0 1 2 3 4 5 6 7 8 9 ...
 $ Month                          : int  6 7 7 8 9 10 11 12 1 2 ...
 $ Food_waste_tank_RT1_gal        : num  NA 394806 185416 144839 330933 ...
 $ Manure_tank_RT2_gal            : num  NA 2044783 1276679 927069 1572684 ...
 $ Digester_temperature_F         : num  NA 113 114 113 112 ...
 $ Biogas_from_digester_ft3       : num  NA 10630133 5694951 4233761 9138567 ...
 $ Electrical_energy_generated_MWh: num  NA 673 458 347 580 ...
 - attr(*, "spec")=List of 2
  ..$ cols   :List of 7
  .. ..$ X1                             : list()
  .. .. ..- attr(*, "class")= chr  "collector_integer" "collector"
  .. ..$ Month                          : list()
  .. .. ..- attr(*, "class")= chr  "collector_integer" "collector"
  .. ..$ Food_waste_tank_RT1_gal        : list()
  .. .. ..- attr(*, "class")= chr  "collector_double" "collector"
  .. ..$ Manure_tank_RT2_gal            : list()
  .. .. ..- attr(*, "class")= chr  "collector_double" "collector"
  .. ..$ Digester_temperature_F         : list()
  .. .. ..- attr(*, "class")= chr  "collector_double" "collector"
  .. ..$ Biogas_from_digester_ft3       : list()
  .. .. ..- attr(*, "class")= chr  "collector_double" "collector"
  .. ..$ Electrical_energy_generated_MWh: list()
  .. .. ..- attr(*, "class")= chr  "collector_double" "collector"
  ..$ default: list()
  .. ..- attr(*, "class")= chr  "collector_guess" "collector"
  ..- attr(*, "class")= chr "col_spec"

Graficas obtenidas

plot of chunk unnamed-chunk-6

plot of chunk unnamed-chunk-7

plot of chunk unnamed-chunk-8

Por que es importante?

La digestion anaerobia puede producir energia al rededor de: 671 (MWh), lo que demuestra la utilidad y productividad de 365 dias de uso de desechos como fuente de produccion sustentable de energia, evidenciando que a partir de 1.759379 × 106(gal/Y) de estiercol se puede dar energia a una granja por este tiempo.

error_1

Impacto

error_2