X = height obtained Y = error X = 200 + Y
\(E(Y) = \frac{1}{5} (-2+-1+0+1+2) = 0\) E(X) = 200 + E(Y) = 200 The expected value is 200 for height obtained.
\(V(Y) = \frac{1}{5} (-2^{2}-1^{2}+0^{2}+1^{2}+2^{2}) = \frac{10}{5} =2\) V(X) = V(Y) = 2
The variance is 2.
\(S_{18}=X_{1}+X_{2}+X_{3}...X_{18}\)
\(average height=\frac{S^{n}}{n}\)
E <- 200
V <- sqrt((1/18)*2)
V
## [1] 0.3333333
#P(199<=Sn*<=201)
#P(199<=Sn*)
P199 <- ((199-E)/V)
P199
## [1] -3
#P(Sn*<=201)
P201 <- ((201-E)/V)
P201
## [1] 3
(0.5-dnorm(P199))*2
## [1] 0.9911363
probability in 18 independent measures of tower is 0.99113.