Student Name: Senet Manandhar
Data received: Built in R studi0 - Gravdes TV & mtcars dataset
Dendrogram
library(openintro)
## Please visit openintro.org for free statistics materials
##
## Attaching package: 'openintro'
## The following objects are masked from 'package:datasets':
##
## cars, trees
data("gradesTV")
head(gradesTV,25)
## TV Grades
## 1 0 82
## 2 0 93
## 3 0 65
## 4 5 90
## 5 7 85
## 6 10 100
## 7 11 90
## 8 12 95
## 9 14 84
## 10 15 75
## 11 15 75
## 12 16 90
## 13 17 79
## 14 19 75
## 15 20 85
## 16 20 78
## 17 20 80
## 18 23 67
## 19 24 75
## 20 25 70
## 21 27 68
## 22 28 63
## 23 30 60
## 24 30 65
## 25 32 85
hc = hclust(dist(gradesTV))
plot(hc)
mtcars
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
str(mtcars)
## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
## $ am : num 1 1 1 0 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
library(ggplot2)
##
## Attaching package: 'ggplot2'
## The following object is masked from 'package:openintro':
##
## diamonds
#theme_set(theme_bw())
hc <- hclust(dist(mtcars), "ave")
hc
##
## Call:
## hclust(d = dist(mtcars), method = "ave")
##
## Cluster method : average
## Distance : euclidean
## Number of objects: 32
plot(hc)
plot(hc, hang = -1, cex=0.9)
##Hierarchical cluster analysis on a set of dissimilarities and methods for analyzing it.
library(ggdendro)
ggdendrogram(hc, rotate = TRUE, size = 2)
The horizontal axis of the dendrogram represents the distance or dissimilarity between clusters. The vertical axis represents the objects and clusters.Our main interestis in similarity and clustering. Each joining (fusion) of two clusters is represented on the graph by the splitting of a horizontal line into two horizontal lines. The horizontal position of the split, shown by the short vertical bar,gives the distance (dissimilarity) between the two clusters.
#model <- hclust(dist(mtcars), "ave")
#dhc <- as.dendrogram(model)
# Rectangular lines
#ddata <- dendro_data(dhc, type = "rectangle")
# p <- ggplot(segment(ddata)) +
# geom_segment(aes(x = x, y = y, xend = xend, yend = yend)) +
# coord_flip() +
# scale_y_reverse(expand = c(.2, 0))
# p
ggdendrogram(hc, rotate = TRUE, size = 4, theme_dendro = FALSE, color = "tomato")
NOTE: After downloading APE package works.
The plot.phylo function has four more different types for plotting a dendrogram. Here they are:
library(ape)
plot(as.phylo(hc), type = "unrooted")
plot(as.phylo(hc), type = "cladogram", cex = 0.9, label.offset = 2)
plot(as.phylo(hc), type = "fan")