download data

if(!file.exists("pml-training.csv")){download.file("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv", destfile = "pml-training.csv")}

if(!file.exists("pml-testing.csv")){download.file("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv", destfile = "pml-testing.csv")}

Load the necessary packages that will be used

library(caret, warn.conflicts = FALSE, quietly = TRUE )

## read data into r and replace missing values with NAs
train_data <- read.csv("pml-training.csv", na.strings = c("", "NA"))
test_data <- read.csv("pml-testing.csv", na.strings = c("", "NA"))
dim(train_data); dim(test_data)
## [1] 19622   160
## [1]  20 160
str(train_data)
## 'data.frame':    19622 obs. of  160 variables:
##  $ X                       : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ user_name               : Factor w/ 6 levels "adelmo","carlitos",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ raw_timestamp_part_1    : int  1323084231 1323084231 1323084231 1323084232 1323084232 1323084232 1323084232 1323084232 1323084232 1323084232 ...
##  $ raw_timestamp_part_2    : int  788290 808298 820366 120339 196328 304277 368296 440390 484323 484434 ...
##  $ cvtd_timestamp          : Factor w/ 20 levels "02/12/2011 13:32",..: 9 9 9 9 9 9 9 9 9 9 ...
##  $ new_window              : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...
##  $ num_window              : int  11 11 11 12 12 12 12 12 12 12 ...
##  $ roll_belt               : num  1.41 1.41 1.42 1.48 1.48 1.45 1.42 1.42 1.43 1.45 ...
##  $ pitch_belt              : num  8.07 8.07 8.07 8.05 8.07 8.06 8.09 8.13 8.16 8.17 ...
##  $ yaw_belt                : num  -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 ...
##  $ total_accel_belt        : int  3 3 3 3 3 3 3 3 3 3 ...
##  $ kurtosis_roll_belt      : Factor w/ 396 levels "-0.016850","-0.021024",..: NA NA NA NA NA NA NA NA NA NA ...
##  $ kurtosis_picth_belt     : Factor w/ 316 levels "-0.021887","-0.060755",..: NA NA NA NA NA NA NA NA NA NA ...
##  $ kurtosis_yaw_belt       : Factor w/ 1 level "#DIV/0!": NA NA NA NA NA NA NA NA NA NA ...
##  $ skewness_roll_belt      : Factor w/ 394 levels "-0.003095","-0.010002",..: NA NA NA NA NA NA NA NA NA NA ...
##  $ skewness_roll_belt.1    : Factor w/ 337 levels "-0.005928","-0.005960",..: NA NA NA NA NA NA NA NA NA NA ...
##  $ skewness_yaw_belt       : Factor w/ 1 level "#DIV/0!": NA NA NA NA NA NA NA NA NA NA ...
##  $ max_roll_belt           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_picth_belt          : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_yaw_belt            : Factor w/ 67 levels "-0.1","-0.2",..: NA NA NA NA NA NA NA NA NA NA ...
##  $ min_roll_belt           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_pitch_belt          : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_yaw_belt            : Factor w/ 67 levels "-0.1","-0.2",..: NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_roll_belt     : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_pitch_belt    : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_yaw_belt      : Factor w/ 3 levels "#DIV/0!","0.00",..: NA NA NA NA NA NA NA NA NA NA ...
##  $ var_total_accel_belt    : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_roll_belt           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_roll_belt        : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_roll_belt           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_pitch_belt          : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_pitch_belt       : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_pitch_belt          : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_yaw_belt            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_yaw_belt         : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_yaw_belt            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ gyros_belt_x            : num  0 0.02 0 0.02 0.02 0.02 0.02 0.02 0.02 0.03 ...
##  $ gyros_belt_y            : num  0 0 0 0 0.02 0 0 0 0 0 ...
##  $ gyros_belt_z            : num  -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 0 ...
##  $ accel_belt_x            : int  -21 -22 -20 -22 -21 -21 -22 -22 -20 -21 ...
##  $ accel_belt_y            : int  4 4 5 3 2 4 3 4 2 4 ...
##  $ accel_belt_z            : int  22 22 23 21 24 21 21 21 24 22 ...
##  $ magnet_belt_x           : int  -3 -7 -2 -6 -6 0 -4 -2 1 -3 ...
##  $ magnet_belt_y           : int  599 608 600 604 600 603 599 603 602 609 ...
##  $ magnet_belt_z           : int  -313 -311 -305 -310 -302 -312 -311 -313 -312 -308 ...
##  $ roll_arm                : num  -128 -128 -128 -128 -128 -128 -128 -128 -128 -128 ...
##  $ pitch_arm               : num  22.5 22.5 22.5 22.1 22.1 22 21.9 21.8 21.7 21.6 ...
##  $ yaw_arm                 : num  -161 -161 -161 -161 -161 -161 -161 -161 -161 -161 ...
##  $ total_accel_arm         : int  34 34 34 34 34 34 34 34 34 34 ...
##  $ var_accel_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_roll_arm            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_roll_arm         : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_roll_arm            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_pitch_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_pitch_arm        : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_pitch_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_yaw_arm             : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_yaw_arm          : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_yaw_arm             : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ gyros_arm_x             : num  0 0.02 0.02 0.02 0 0.02 0 0.02 0.02 0.02 ...
##  $ gyros_arm_y             : num  0 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.02 -0.03 -0.03 ...
##  $ gyros_arm_z             : num  -0.02 -0.02 -0.02 0.02 0 0 0 0 -0.02 -0.02 ...
##  $ accel_arm_x             : int  -288 -290 -289 -289 -289 -289 -289 -289 -288 -288 ...
##  $ accel_arm_y             : int  109 110 110 111 111 111 111 111 109 110 ...
##  $ accel_arm_z             : int  -123 -125 -126 -123 -123 -122 -125 -124 -122 -124 ...
##  $ magnet_arm_x            : int  -368 -369 -368 -372 -374 -369 -373 -372 -369 -376 ...
##  $ magnet_arm_y            : int  337 337 344 344 337 342 336 338 341 334 ...
##  $ magnet_arm_z            : int  516 513 513 512 506 513 509 510 518 516 ...
##  $ kurtosis_roll_arm       : Factor w/ 329 levels "-0.02438","-0.04190",..: NA NA NA NA NA NA NA NA NA NA ...
##  $ kurtosis_picth_arm      : Factor w/ 327 levels "-0.00484","-0.01311",..: NA NA NA NA NA NA NA NA NA NA ...
##  $ kurtosis_yaw_arm        : Factor w/ 394 levels "-0.01548","-0.01749",..: NA NA NA NA NA NA NA NA NA NA ...
##  $ skewness_roll_arm       : Factor w/ 330 levels "-0.00051","-0.00696",..: NA NA NA NA NA NA NA NA NA NA ...
##  $ skewness_pitch_arm      : Factor w/ 327 levels "-0.00184","-0.01185",..: NA NA NA NA NA NA NA NA NA NA ...
##  $ skewness_yaw_arm        : Factor w/ 394 levels "-0.00311","-0.00562",..: NA NA NA NA NA NA NA NA NA NA ...
##  $ max_roll_arm            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_picth_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_yaw_arm             : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_roll_arm            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_pitch_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_yaw_arm             : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_roll_arm      : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_pitch_arm     : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_yaw_arm       : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ roll_dumbbell           : num  13.1 13.1 12.9 13.4 13.4 ...
##  $ pitch_dumbbell          : num  -70.5 -70.6 -70.3 -70.4 -70.4 ...
##  $ yaw_dumbbell            : num  -84.9 -84.7 -85.1 -84.9 -84.9 ...
##  $ kurtosis_roll_dumbbell  : Factor w/ 397 levels "-0.0035","-0.0073",..: NA NA NA NA NA NA NA NA NA NA ...
##  $ kurtosis_picth_dumbbell : Factor w/ 400 levels "-0.0163","-0.0233",..: NA NA NA NA NA NA NA NA NA NA ...
##  $ kurtosis_yaw_dumbbell   : Factor w/ 1 level "#DIV/0!": NA NA NA NA NA NA NA NA NA NA ...
##  $ skewness_roll_dumbbell  : Factor w/ 400 levels "-0.0082","-0.0096",..: NA NA NA NA NA NA NA NA NA NA ...
##  $ skewness_pitch_dumbbell : Factor w/ 401 levels "-0.0053","-0.0084",..: NA NA NA NA NA NA NA NA NA NA ...
##  $ skewness_yaw_dumbbell   : Factor w/ 1 level "#DIV/0!": NA NA NA NA NA NA NA NA NA NA ...
##  $ max_roll_dumbbell       : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_picth_dumbbell      : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_yaw_dumbbell        : Factor w/ 72 levels "-0.1","-0.2",..: NA NA NA NA NA NA NA NA NA NA ...
##  $ min_roll_dumbbell       : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_pitch_dumbbell      : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_yaw_dumbbell        : Factor w/ 72 levels "-0.1","-0.2",..: NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_roll_dumbbell : num  NA NA NA NA NA NA NA NA NA NA ...
##   [list output truncated]

Remove columns with NAs

train_data <- train_data[, (colSums(is.na(train_data))==0)]
dim(train_data)
## [1] 19622    60
test_data <- test_data[, (colSums(is.na(test_data))==0)]
dim(test_data)
## [1] 20 60
str(train_data)
## 'data.frame':    19622 obs. of  60 variables:
##  $ X                   : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ user_name           : Factor w/ 6 levels "adelmo","carlitos",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ raw_timestamp_part_1: int  1323084231 1323084231 1323084231 1323084232 1323084232 1323084232 1323084232 1323084232 1323084232 1323084232 ...
##  $ raw_timestamp_part_2: int  788290 808298 820366 120339 196328 304277 368296 440390 484323 484434 ...
##  $ cvtd_timestamp      : Factor w/ 20 levels "02/12/2011 13:32",..: 9 9 9 9 9 9 9 9 9 9 ...
##  $ new_window          : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...
##  $ num_window          : int  11 11 11 12 12 12 12 12 12 12 ...
##  $ roll_belt           : num  1.41 1.41 1.42 1.48 1.48 1.45 1.42 1.42 1.43 1.45 ...
##  $ pitch_belt          : num  8.07 8.07 8.07 8.05 8.07 8.06 8.09 8.13 8.16 8.17 ...
##  $ yaw_belt            : num  -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 ...
##  $ total_accel_belt    : int  3 3 3 3 3 3 3 3 3 3 ...
##  $ gyros_belt_x        : num  0 0.02 0 0.02 0.02 0.02 0.02 0.02 0.02 0.03 ...
##  $ gyros_belt_y        : num  0 0 0 0 0.02 0 0 0 0 0 ...
##  $ gyros_belt_z        : num  -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 0 ...
##  $ accel_belt_x        : int  -21 -22 -20 -22 -21 -21 -22 -22 -20 -21 ...
##  $ accel_belt_y        : int  4 4 5 3 2 4 3 4 2 4 ...
##  $ accel_belt_z        : int  22 22 23 21 24 21 21 21 24 22 ...
##  $ magnet_belt_x       : int  -3 -7 -2 -6 -6 0 -4 -2 1 -3 ...
##  $ magnet_belt_y       : int  599 608 600 604 600 603 599 603 602 609 ...
##  $ magnet_belt_z       : int  -313 -311 -305 -310 -302 -312 -311 -313 -312 -308 ...
##  $ roll_arm            : num  -128 -128 -128 -128 -128 -128 -128 -128 -128 -128 ...
##  $ pitch_arm           : num  22.5 22.5 22.5 22.1 22.1 22 21.9 21.8 21.7 21.6 ...
##  $ yaw_arm             : num  -161 -161 -161 -161 -161 -161 -161 -161 -161 -161 ...
##  $ total_accel_arm     : int  34 34 34 34 34 34 34 34 34 34 ...
##  $ gyros_arm_x         : num  0 0.02 0.02 0.02 0 0.02 0 0.02 0.02 0.02 ...
##  $ gyros_arm_y         : num  0 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.02 -0.03 -0.03 ...
##  $ gyros_arm_z         : num  -0.02 -0.02 -0.02 0.02 0 0 0 0 -0.02 -0.02 ...
##  $ accel_arm_x         : int  -288 -290 -289 -289 -289 -289 -289 -289 -288 -288 ...
##  $ accel_arm_y         : int  109 110 110 111 111 111 111 111 109 110 ...
##  $ accel_arm_z         : int  -123 -125 -126 -123 -123 -122 -125 -124 -122 -124 ...
##  $ magnet_arm_x        : int  -368 -369 -368 -372 -374 -369 -373 -372 -369 -376 ...
##  $ magnet_arm_y        : int  337 337 344 344 337 342 336 338 341 334 ...
##  $ magnet_arm_z        : int  516 513 513 512 506 513 509 510 518 516 ...
##  $ roll_dumbbell       : num  13.1 13.1 12.9 13.4 13.4 ...
##  $ pitch_dumbbell      : num  -70.5 -70.6 -70.3 -70.4 -70.4 ...
##  $ yaw_dumbbell        : num  -84.9 -84.7 -85.1 -84.9 -84.9 ...
##  $ total_accel_dumbbell: int  37 37 37 37 37 37 37 37 37 37 ...
##  $ gyros_dumbbell_x    : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ gyros_dumbbell_y    : num  -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 ...
##  $ gyros_dumbbell_z    : num  0 0 0 -0.02 0 0 0 0 0 0 ...
##  $ accel_dumbbell_x    : int  -234 -233 -232 -232 -233 -234 -232 -234 -232 -235 ...
##  $ accel_dumbbell_y    : int  47 47 46 48 48 48 47 46 47 48 ...
##  $ accel_dumbbell_z    : int  -271 -269 -270 -269 -270 -269 -270 -272 -269 -270 ...
##  $ magnet_dumbbell_x   : int  -559 -555 -561 -552 -554 -558 -551 -555 -549 -558 ...
##  $ magnet_dumbbell_y   : int  293 296 298 303 292 294 295 300 292 291 ...
##  $ magnet_dumbbell_z   : num  -65 -64 -63 -60 -68 -66 -70 -74 -65 -69 ...
##  $ roll_forearm        : num  28.4 28.3 28.3 28.1 28 27.9 27.9 27.8 27.7 27.7 ...
##  $ pitch_forearm       : num  -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.8 -63.8 -63.8 ...
##  $ yaw_forearm         : num  -153 -153 -152 -152 -152 -152 -152 -152 -152 -152 ...
##  $ total_accel_forearm : int  36 36 36 36 36 36 36 36 36 36 ...
##  $ gyros_forearm_x     : num  0.03 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.02 ...
##  $ gyros_forearm_y     : num  0 0 -0.02 -0.02 0 -0.02 0 -0.02 0 0 ...
##  $ gyros_forearm_z     : num  -0.02 -0.02 0 0 -0.02 -0.03 -0.02 0 -0.02 -0.02 ...
##  $ accel_forearm_x     : int  192 192 196 189 189 193 195 193 193 190 ...
##  $ accel_forearm_y     : int  203 203 204 206 206 203 205 205 204 205 ...
##  $ accel_forearm_z     : int  -215 -216 -213 -214 -214 -215 -215 -213 -214 -215 ...
##  $ magnet_forearm_x    : int  -17 -18 -18 -16 -17 -9 -18 -9 -16 -22 ...
##  $ magnet_forearm_y    : num  654 661 658 658 655 660 659 660 653 656 ...
##  $ magnet_forearm_z    : num  476 473 469 469 473 478 470 474 476 473 ...
##  $ classe              : Factor w/ 5 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 1 1 ...

Delete columns 1 to 8 because they are not relevant as predictors.

train_data <- train_data[, -c(1:8)]
dim(train_data)
## [1] 19622    52
test_data <- test_data[, -c(1:8)]
dim(test_data)
## [1] 20 52

Data processing

split the data into training and testing data

inTrain <- createDataPartition(y=train_data$classe, p=0.7, list = FALSE)
train <- train_data[inTrain,]
test <- train_data[-inTrain,]
dim(train); dim(test)
## [1] 13737    52
## [1] 5885   52

remove zero covariates

nsv <- nearZeroVar(train, saveMetrics = TRUE)
nsv
##                      freqRatio percentUnique zeroVar   nzv
## pitch_belt            1.014085   12.38261629   FALSE FALSE
## yaw_belt              1.079772   13.03778117   FALSE FALSE
## total_accel_belt      1.047488    0.20382907   FALSE FALSE
## gyros_belt_x          1.043249    0.93906967   FALSE FALSE
## gyros_belt_y          1.135377    0.47317464   FALSE FALSE
## gyros_belt_z          1.067906    1.19385601   FALSE FALSE
## accel_belt_x          1.017921    1.14289874   FALSE FALSE
## accel_belt_y          1.144380    0.99730654   FALSE FALSE
## accel_belt_z          1.118033    2.11836646   FALSE FALSE
## magnet_belt_x         1.069388    2.17660333   FALSE FALSE
## magnet_belt_y         1.069915    2.10380724   FALSE FALSE
## magnet_belt_z         1.026549    3.16663027   FALSE FALSE
## roll_arm             53.818182   17.60209653   FALSE FALSE
## pitch_arm            87.740741   20.30283177   FALSE FALSE
## yaw_arm              31.157895   19.25456796   FALSE FALSE
## total_accel_arm       1.017081    0.48045425   FALSE FALSE
## gyros_arm_x           1.025281    4.57159496   FALSE FALSE
## gyros_arm_y           1.422043    2.64977797   FALSE FALSE
## gyros_arm_z           1.116022    1.73982675   FALSE FALSE
## accel_arm_x           1.091667    5.53978307   FALSE FALSE
## accel_arm_y           1.215278    3.79267671   FALSE FALSE
## accel_arm_z           1.056180    5.64897721   FALSE FALSE
## magnet_arm_x          1.016667    9.61636456   FALSE FALSE
## magnet_arm_y          1.129032    6.21678678   FALSE FALSE
## magnet_arm_z          1.037975    9.12135110   FALSE FALSE
## roll_dumbbell         1.120879   86.66375482   FALSE FALSE
## pitch_dumbbell        2.156863   84.35611851   FALSE FALSE
## yaw_dumbbell          1.228916   86.10322487   FALSE FALSE
## total_accel_dumbbell  1.075710    0.31302322   FALSE FALSE
## gyros_dumbbell_x      1.011601    1.67431026   FALSE FALSE
## gyros_dumbbell_y      1.320293    1.97277426   FALSE FALSE
## gyros_dumbbell_z      1.030879    1.45592196   FALSE FALSE
## accel_dumbbell_x      1.075893    2.99191963   FALSE FALSE
## accel_dumbbell_y      1.000000    3.29766325   FALSE FALSE
## accel_dumbbell_z      1.175758    2.90456432   FALSE FALSE
## magnet_dumbbell_x     1.150000    7.81830094   FALSE FALSE
## magnet_dumbbell_y     1.181818    6.01295771   FALSE FALSE
## magnet_dumbbell_z     1.007407    4.79726287   FALSE FALSE
## roll_forearm         11.502110   13.58375191   FALSE FALSE
## pitch_forearm        66.487805   19.04345927   FALSE FALSE
## yaw_forearm          16.317365   12.84851132   FALSE FALSE
## total_accel_forearm   1.134593    0.48045425   FALSE FALSE
## gyros_forearm_x       1.000000    2.02373153   FALSE FALSE
## gyros_forearm_y       1.010989    5.29955594   FALSE FALSE
## gyros_forearm_z       1.119186    2.13292568   FALSE FALSE
## accel_forearm_x       1.114754    5.65625682   FALSE FALSE
## accel_forearm_y       1.000000    7.09033996   FALSE FALSE
## accel_forearm_z       1.037736    4.01106501   FALSE FALSE
## magnet_forearm_x      1.033898   10.56999345   FALSE FALSE
## magnet_forearm_y      1.133333   13.24161025   FALSE FALSE
## magnet_forearm_z      1.024390   11.72017180   FALSE FALSE
## classe                1.469526    0.03639805   FALSE FALSE

There are no variables to drop(All FALSE)

Fitting model by Predicting outcomes using random forest method.

I used the crossvalidation method to detect relevant features for building the correct model

set.seed(123)
modfit <- train(classe~.,method="rf",trControl=trainControl(method = "cv", number = 3), data=train)
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
## 
##     margin
modfit
## Random Forest 
## 
## 13737 samples
##    51 predictor
##     5 classes: 'A', 'B', 'C', 'D', 'E' 
## 
## No pre-processing
## Resampling: Cross-Validated (3 fold) 
## Summary of sample sizes: 9158, 9159, 9157 
## Resampling results across tuning parameters:
## 
##   mtry  Accuracy   Kappa    
##    2    0.9870420  0.9836052
##   26    0.9887890  0.9858163
##   51    0.9842755  0.9801052
## 
## Accuracy was used to select the optimal model using  the largest value.
## The final value used for the model was mtry = 26.

Predict new values using the test data. This is also the expected out of sample error

pre_test <- predict(modfit, test)
confusionMatrix(test$classe, pre_test)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    A    B    C    D    E
##          A 1674    0    0    0    0
##          B    7 1126    5    0    1
##          C    0    8 1014    4    0
##          D    0    0   15  948    1
##          E    0    0    2    1 1079
## 
## Overall Statistics
##                                         
##                Accuracy : 0.9925        
##                  95% CI : (0.99, 0.9946)
##     No Information Rate : 0.2856        
##     P-Value [Acc > NIR] : < 2.2e-16     
##                                         
##                   Kappa : 0.9905        
##  Mcnemar's Test P-Value : NA            
## 
## Statistics by Class:
## 
##                      Class: A Class: B Class: C Class: D Class: E
## Sensitivity            0.9958   0.9929   0.9788   0.9948   0.9981
## Specificity            1.0000   0.9973   0.9975   0.9968   0.9994
## Pos Pred Value         1.0000   0.9886   0.9883   0.9834   0.9972
## Neg Pred Value         0.9983   0.9983   0.9955   0.9990   0.9996
## Prevalence             0.2856   0.1927   0.1760   0.1619   0.1837
## Detection Rate         0.2845   0.1913   0.1723   0.1611   0.1833
## Detection Prevalence   0.2845   0.1935   0.1743   0.1638   0.1839
## Balanced Accuracy      0.9979   0.9951   0.9881   0.9958   0.9988
## the accuracy for the expected out of sample error is 99.27%

Predicting new values(20 test cases) using the prediction model developed.

pred_final <- predict(modfit, newdata=test_data)
pred_final
##  [1] B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E